Rapid-response spectrophotometric characterization of Near-Earth Objects

Samuel Navarro-Meza Work directed by

David Trilling, Michael Mommert and Mauricio Reyes-Ruiz

UNAM/NAU

September 6 2017

Why are NEOs important?

Why are NEOs important?

• Origins of the Solar System

Why are NEOs important?

- Origins of the Solar System
- Earth's safety

Why are NEOs important?

- Origins of the Solar System
- Earth's safety
- Mineral resources

Estimations yields about 10^5 NEOs larger than 50m (Trilling et al, 2017).

Estimations yields about 10^5 NEOs larger than 50m (Trilling et al, 2017).

Big asteroids

- orbits
- compositions

Estimations yields about 10^5 NEOs larger than 50m (Trilling et al, 2017).

• Big asteroids

- orbits
- compositions

• Small asteroids (D<100m)

- orbits
- compositions

Small asteroids

• compositions

RATIR on 1.5m; Observatorio Astronómico Nacional, Mexico.

Watson et al. 2012

RATIR on 1.5m; Observatorio Astronómico Nacional, Mexico.

Spectrophotometry

Simultaneously collects light in the bands r, i, Z, Y, J, H, z

Watson et al. 2012

RATIR on 1.5m; Observatorio Astronómico Nacional, Mexico.

Spectrophotometry

- Simultaneously collects light in the bands r, i, Z, Y, J, H, z
- Has been shown to be enough to taxonomically classify via the color (r-i) of the object.

Watson et al. 2012

RATIR on 1.5m; Observatorio Astronómico Nacional, Mexico.

Spectrophotometry

• Simultaneously collects light in the bands r, i, Z, Y, J, H, z

 Has been shown to be enough to taxonomically classify via the color (r-i) of the object.

Rapid-response

Automated selection of the recently discovered objects, before they fade away.

Project's goals

Facilities allows us to make observations most nights of the year in robotic/queue mode.

Project's goals

Facilities allows us to make observations most nights of the year in robotic/queue mode.

• Characterize 20%+ of each year's NEO discoveries.

Project's goals

Facilities allows us to make observations most nights of the year in robotic/queue mode.

- Characterize 20%+ of each year's NEO discoveries.
- Increase number of small and very small NEOs taxonomically described.

Preliminary results

Probability Density Function of the sample.

Preliminary results

Probability Density Distribution of the sample. Gaussian fit centered at Cand S-type *r*-*i* indexes. $S_f = 44.2$.

Preliminary results

Comparation of the PDF with a Random generated PDF. $S_f = 44.07$.

Conclusions

• By using two different methods to obtain our results, we found a 44% of S-type asteroids in our sample.

Conclusions

- By using two different methods to obtain our results, we found a 44% of S-type asteroids in our sample.
- Preliminary results are in good agreement with our previous work (Mommert et al, 2016).

Thank you.

Figure 1: Fraction of known NEOs with any form of spectral data as a function of size (Provided by N. Moslovitz).

This project

Figure 2: NIR photometric colors are indicative of asteroid compositions. Bandpasses used by RATIR (Watson et al. 2006) and UKIRT (Hewett et al. 2016). Also plotted the averaged asteroid reflectance spectra ($DeMeo\ et\ al.\ 2009$) of the main asteroid types.

Figure 3: Error distribution for the full sample (no selection criteria applied)[??].

17 of 17