Thermal Reactions in Simulated Astrophysical Environments

Mark Loeffler Northern Arizona University New Faculty in the Department of Physics and Astronomy

Background

- Composition of planetary surfaces can be altered by radiolysis/photolysis
- Laboratory studies show H₂O₂ and O₃ easily form from radiolysis/photolysis

Few detections via remote sensing

• Why the difference?

 $-H_2O_2/O_3$ react with other compounds in the ice?

Recent Lab Findings

- Grow mixtures of H₂O+SO₂ with oxidant
 - H₂O₂ and O₃ react
- Main products:
 - HSO₃⁻ (80 100 K)
 - $-S_2O_5^{2-}$ (80 100 K)
 - HSO₄⁻ (> 100 K) O₃
 - SO₄²⁻ (> 100 K) H₂O₂
- Important for Jovian icy satellites
- What about other molecules?
 - $H_2S?$
 - CO?
 - NH₃?

Hydrogen sulfide

Smells like...

React?

Yes

Hydrogen sulfide

Methanethiol Methyl mercaptan

Smells like...

React?

Yes

Yes

Hydrogen sulfide

Methanethiol Methyl mercaptan

H₃C′ Н

SOLLIEN GARDAGE

Methylthiomethane Dimethyl sulfide

H₃C CH_3

Smells like...

React?

Yes

Yes

??

Summary

- Thermal reactions important for Jovian icy satellites
- Reactions also observed with more complicated organosulfur compounds
 - May be relevant to other surfaces
- Future work will test reactions for other ices

Acknowledgments/Shameless Plug

Financial support from NASA programs

- NASA Solar System Workings
- Outer Planets Research
- NASA Astrobiology Institute
- Laboratory will be at NAU (Bldg 19 Rm 313)
 - Thermal reactions described here
 - Radiolysis of ices and non-icy surfaces (asteroid analogs, etc.)
 - Characterization/optical properties of astrophysically relevant materials
- Email: mark.loeffler@nau.edu

Reaction of O_3 in $H_2O+SO_2+O_3$ ice

Reaction Pathway

 $2 H_2 O + SO_2 \rightarrow HSO_3^- + H_3O^+$ $O_3 + HSO_3^- \rightarrow HSO_4^- + O_2$

Seriously?

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives Internation 4.0 licence.

Calculation of Activation Energy

- Isoconversional method
 - Heat samples at different rates
- Activation energy of 32 kJ / mole

Isoconversional Method

•
$$\frac{d\alpha}{dt} = k(T)f(\alpha)$$

•
$$\frac{d\alpha}{dT} = \left(\frac{A}{\beta}\right) e^{-E/RT} f(\alpha)$$

•
$$\ln[\beta_i \left(\frac{d\alpha}{dT}\right)_{\alpha,i}] = \ln[A_{\alpha}f(\alpha)] - E_{\alpha}/RT_{\alpha,i}$$