Contact binaries in the trans-Neptunian belt

Audrey Thirouin¹ and Scott S. Sheppard²

¹: Lowell Observatory, Flagstaff, AZ.

²: Department of Terrestrial Magnetism (DTM), Carnegie Institution for Science, Washington, DC.

— New Horizons: 2014 MU₆₉

NEW HORIZONS ULTIMA 1 JANUARY

CLOSE FLYBY OF THULE 2 0 1 9

NASA's New Horizons spacecraft next target: 2014 MU₆₉, nicknamed Ultima Thule. 2014 MU₆₉: small trans-Neptunian object (~20-30 km), dynamically Cold Classical (least evolved TNOs), no rotational period, no composition ... no direct observation from the ground.

New Horizons

- Stellar occultation ⇒ Shape, size, albedo, satellite(s)/ring(s), atmosphere, topographic feature(s).
- Positive stellar occultation by 2014 MU₆₉ last year detected from 5 stations.
- Shape of 2014 MU₆₉ ⇒ contact binary.
- Contact binaries are found across the Solar System...
- ... and a lot of them.

New Horizons

- Stellar occultation ⇒ Shape, size, albedo, satellite(s)/ring(s), atmosphere, topographic feature(s).
- Positive stellar occultation by 2014 MU₆₉ last year detected from 5 stations.
- Shape of 2014 MU₆₉ ⇒ contact binary.
- Contact binaries are found across the Solar System...
- ... and a lot of them.

- Stellar occultation ⇒ Shape, size, albedo, satellite(s)/ring(s), atmosphere, topographic feature(s).
- Positive stellar occultation by 2014 MU₆₉ last year detected from 5 stations.
- Shape of 2014 $MU_{69} \Rightarrow$ contact binary.
- Contact binaries are found across the Solar System...
- ... and a lot of them.

- Stellar occultation ⇒ Shape, size, albedo, satellite(s)/ring(s), atmosphere, topographic feature(s).
- Positive stellar occultation by 2014 MU₆₉ last year detected from 5 stations.
- Shape of 2014 MU₆₉ ⇒ contact binary.
- Contact binaries are found across the Solar System...
- ... and a lot of them.

- Stellar occultation ⇒ Shape, size, albedo, satellite(s)/ring(s), atmosphere, topographic feature(s).
- Positive stellar occultation by 2014 MU₆₉ last year detected from 5 stations.
- Shape of 2014 MU₆₉ ⇒ contact binary.
- Contact binaries are found across the Solar System...
- ... and a lot of them.

Contact binaries in the trans-Neptunian belt _____. Expected

Expected fraction of contact binaries: 30%

- Large sample ⇒ formation/evolution (when, where, how), fractions in sub-populations, physical characteristics ...
- ... context for the New Horizons flyby of 2014 MU₆₉
- Observations, excluding 2014 MU₆₉.
- Fractions, formation/evolution, characteristics?⇒
 No.idea, no

Contact binaries in the trans-Neptunian belt _____. Expected

- Expected fraction of contact binaries: 30%
- Large sample ⇒ formation/evolution (when, where, how), fractions in sub-populations, physical characteristics ...
- ... context for the New Horizons flyby of 2014 MU₆₉
- Observations, excluding 2014 MU₆₉.
- Fractions, formation/evolution, characteristics?⇒
 No.idea, no

Contact binaries in the trans-Neptunian belt - Expecte

- Expected fraction of contact binaries: 30%
- Large sample ⇒ formation/evolution (when, where, how), fractions in sub-populations, physical characteristics ...
- ... context for the New Horizons flyby of 2014 MU₆₉
- Observations, excluding 2014 MU₆₉.
- Fractions, formation/evolution, characteristics?⇒
 No idea, no context!!

Contact binaries in the trans-Neptunian belt - • Expected

- Expected fraction of contact binaries: 30%
- Large sample ⇒ formation/evolution (when, where, how), fractions in sub-populations, physical characteristics ...
- ... context for the New Horizons flyby of 2014 MU₆₉
- Observations, excluding 2014 MU₆₉.
- Fractions, formation/evolution, characteristics?⇒
 No idea, no context!!

Contact binaries in the trans-Neptunian belt - • Expected

- Expected fraction of contact binaries: 30%
- Large sample ⇒ formation/evolution (when, where, how), fractions in sub-populations, physical characteristics ...
- ... context for the New Horizons flyby of 2014 MU₆₉
- Observations, excluding 2014 MU₆₉.
- Fractions, formation/evolution, characteristics?⇒
 No idea, no context!!

— Our survey

- Identification of contact binaries with lightcurves.
- Two facilities: 4.3 m DCT and 6.5 m Magellan telescopes.
- 12 contact binaries known so far: 11 found by us.
- 40-50% in the Plutinos ⇒ Excess.
- ~10% in the Cold Classicals ⇒ Deficit.
- Not a lot of MU₆₉-like object in the Cold Classicals.
- Excess/deficit ⇒ formation/evolution?

— Our survey

- Identification of contact binaries with lightcurves.
- Two facilities: 4.3 m DCT and 6.5 m Magellan telescopes.
- 12 contact binaries known so far: 11 found by us.
- 40-50% in the Plutinos \Rightarrow Excess.
- ~10% in the Cold Classicals ⇒ Deficit.
- Not a lot of MU₆₉-like object in the Cold Classicals.
- Excess/deficit ⇒ formation/evolution?

— Our survey

- Identification of contact binaries with lightcurves.
- Two facilities: 4.3 m DCT and 6.5 m Magellan telescopes.
- 12 contact binaries known so far: 11 found by us.
- 40-50% in the Plutinos \Rightarrow Excess.
- ~10% in the Cold Classicals ⇒ Deficit.
- Not a lot of MU₆₉-like object in the Cold Classicals.
- Excess/deficit ⇒ formation/evolution?

= Our survey

- Identification of contact binaries with lightcurves.
- Two facilities: 4.3 m DCT and 6.5 m Magellan telescopes.
- 12 contact binaries known so far: 11 found by us.
- 40-50% in the Plutinos \Rightarrow Excess.
- $\sim 10\%$ in the Cold Classicals \Rightarrow Deficit.
- Not a lot of MU₆₉-like object in the Cold Classicals.
- Excess/deficit ⇒ formation/evolution?

Our survey

50 40 30 nclination 20 10 0 30 35 60 40 50 55 Semi-major axis [AU]

- Identification of contact binaries with lightcurves.
- Two facilities: 4.3 m DCT and 6.5 m Magellan telescopes.
- 12 contact binaries known so far: 11 found by us.
- 40-50% in the Plutinos \Rightarrow Excess.
- $\sim 10\%$ in the Cold Classicals \Rightarrow Deficit.
- Not a lot of MU₆₉-like object in the Cold Classicals.
- Excess/deficit ⇒ formation/evolution?

─ Our survey :

- Identification of contact binaries with lightcurves.
- Two facilities: 4.3 m DCT and 6.5 m Magellan telescopes.
- 12 contact binaries known so far: 11 found by us.
- 40-50% in the Plutinos \Rightarrow Excess.
- $\sim 10\%$ in the Cold Classicals \Rightarrow Deficit.
- Not a lot of MU₆₉-like object in the Cold Classicals.
- Excess/deficit ⇒ formation/evolution?