Secular Evolution of Disk Mass profiles

J. A. Sellwood with Joel Berrier

Lowell Observatory, Oct 6, 2014

Departures from perfect exponentials

- Aside from type II and type III truncations
- Departures from exponential are equally interesting

- INT-WFC (2.5m): 180

ICC 4245 -- INT-WFC (2.5m): 1200

INT-WEC (2.5m): 190

ICC 4151 -- INT-PFCU (2.5a

Disk formation

- Most ideas favor "inside out" growth of disks
 late arriving material has more L,
- Hierarchical galaxy formation: infalling gas arrives in the disk from
 - a steady drizzle of
 - streams of cold gas
 - lumps from minor mergers
- Just how sensitive is the final disk profile to the detailed distribution of L_z in this material?

Dynamical instability can create exponential disks

- Bar formation: *e.g.* Hohl (1971), Debattista *et al.* (2006)
 - happens on a short time scale
 - bar persists
 - leaves a hot outer disknot really secular
- Multiple spiral patterns are more promising

3 Eccentric orbits Circular orbits Scattering by $\Delta E = \Omega_{\rm p} \Delta L_{\rm z}$ rotating Ε Inaccessible perturbations ILR Lindblad diagram

OLR

12

- Angular momentum changes cause heating at Lindblad resonances but not at corotation
- Most disks are dynamically cool, so L, changes at Lindblad resonances must have been small
- Can L₂ changes at corotation change the disk mass profile?

A growing disk

- Artificial simulations
 - rigid bulge & halo to isolate disk dynamics
 - mass added continuously or episodically in a fixed or moving annulus
 - many attempts to make an unrealistic galaxy model
- Strong, open, 2- and 3-arm spirals spread the mass all across the disk over time

Change of angular momentum

- Initial disk + added particles have separate ranges of initial L_z
- Disk both shrinks and spreads
- Some added particles gain more than twice their initial L_z

"Outside in" growth

- Radius of added matter moved inwards over time
- Result was pretty nearly the same
 - quasi-exponential disk
 - almost flat rotation curve (blue)
- As with episodic growth, wide or narrow annuli, uniform or Gaussian annuli, etc.
- Spirals always spread the mass efficiently

Smoothing mechanism

- 1/3 mass Mestel disk (~stable)
- add a ring of mass very quickly then wait to see what happens
- provokes 3-arm spiral pattern
 - swing amplification most effective
 for m = 1/(disk mass fraction) in the
 Mestel disk

Evolution of density and rotation curve

- Feature is erased very effectively
- within ~5 orbits at the ring radius

- Rapidly growing modes
- Corotation of each just in/outside the overdensity

Horseshoe in rotating frame

0.0

- Crossed corotation because L_z changed
- But no increase in epicyclic motion

Horseshoe orbits

- Orbits swap sides of corotation
 - reverse direction
 in the rotating
 frame only

- Same happens in spirals
 - but their transient nature causes just one change for each star
 - angular momentum can change by ~20% in one step with no increase in random motion

Ridge is erased

 Roughly equal numbers of stars gain and lose in a disk having a smooth profile

- Little change they simply swap places
- But with a density ridge, spirals pull much more mass out of the ridge, both inwards and outwards, than they put back into the ridge
- The ridge is flattened
 - argued by Lovelace & Hohlfeld (1979)!

Sub-maximal disk

- Similar calculation, but more halo dominated
- Smaller scale, more multiarm patterns
 - as expected for a submaximal disk
- Feature in both density profile and rotation curve erased more slowly

Renzo's rule

- Sancisi (2004) remarked
 - "For any feature in the luminosity profile there is a corresponding feature in the rotation curve and vice versa"
- We see this all the time in our simulations
- Also a "disk-halo conspiracy" (Bahcall & Casertano 1985)

Maximum disks

- Many strands of evidence suggest that baryonic matter dominates the central attraction in large, HSB disk galaxies
 - gas flow in bars (e.g. Weiner et al. 2001)
 - spiral arm multiplicity (e.g. JS & Carlberg 1984)
 - dynamical friction against bars (Debattista & JS 2000) if $\mathscr{R} \equiv R_c/a_B < 1.4$ for a strong bar \rightarrow the galaxy has a maximum disk
 - notwithstanding Athanassoula (2014) who wrote:
 "the *R* value cannot constrain the halo density, nor
 determine whether galactic discs are maximal or
 submaximal"

- Her argument was based on the figure below
- All models start with the same submaximal disk

Initially spherical halo

2

1.8

R_{CR}/L_b 1.6

4.1

2

0

2

4

Time [Gyrs]

6

8

- Gas mass rearranged itself before the bar settled
 i.e. gas rich disks quickly became maximal
- \mathscr{R} values in complete agreement with other work
- Remains true that $\mathcal{R} < 1.4$ requires a max disk

Conclusions

- The final surface density profile is insensitive to the detailed distribution of angular momentum of material that makes up the disk
 - high L_z mass on circular orbits can be spread radially by spiral patterns
 - effected by changes at corotation without heating
 - relative change in radius up to $\sim 20\%$
 - later patterns can spread it farther
- Happens more slowly in sub-maximal disks