Star

Star Birth at an Extreme: The Shrinking Womb

Deidre Hunter Lowell Observatory

Civil Air Patrol, June 28, 2014

Lowell Observatory has a rich scientific history.

Percival Lowell observing Mars at the 24-inch refracting (Clark) telescope

Lowell Observatory today

4.3-meter Discovery Channel Telescope

Anderson Mesa: NPOI, 1.8 m, 1.1 m, 0.8 m, LONEOS schmidt

Titan Monitoring Telescope **Visitor Center**

Lowell Observatory today

Inner Solar System Scientific staff----Asteroids, comets 14 active PhD astronomers Outer Solar System 1 assistant research scientist Pluto, KBOs, outer planet seasons, weather on Titan 2 post-docs 1 pre-doc Exoplanets seasonal undergraduates Searches, star-planet interactions several research assistants Low mass stars Atmospheres, formation and evolution Intermediate mass stars Long term variability of solar-type stars, binary star masses, circumstellar disk evolution, fundamental properties High mass stars Evolution Nearby Galaxies Dwarf galaxies, disk dynamics

A bird's eye view of star formation

Stars form from clouds of gas.

- Between the stars is a very tenuous gas.
- Because galaxies are so big, there is a lot of mass in interstellar gas.
- Originally the gas was just Hydrogen, 8% Helium

Orion Nebula

Molecular clouds form from atomic clouds

http://abyss.uoregon.edu/~js/ast122/lectures/lec22.html

Stars form in "dense" molecular clouds - the womb

ESO PR Photo 20a/99 (30 April 1999)

The "Black Cloud" B68

C European Southern Obser

HST image, Hubble Heritage Team (STScI/AURA)/NASA

Protoplanetary Disks Orion Nebula

HST · WFPC2

45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA The process of star formation is inefficient: 50-95% of the gas is leftover.

Sharp, REU program/NOAO/AURA/NSF

Lagoon Nebula • M8

PRC96-38a • ST Scl OPO • January 22, 1997 A. Caulet (European Southern Observatory) and NASA HST • WFPC2

Massive stars break up their molecular cloud.

Nebula N83B (NGC 1748) in the Large Magellanic Cloud NASA, ESA, and M. Heydari-Malayeri (Observatoire de Paris, France) • STScI-PRC01-11

A massive star cluster in the LMC

NGC 1850 • Star Clusters in the Large Magellanic Cloud NASA, ESA and M. Romaniello (European Southern Observatory) • STScI-PRC01-25

HST • WFPC2

Formation of the molecular cloud depends on dust and heavy elements

 As a shield: Protect the molecules from dissociation by UV radiation from stars

As a coolant: Remove energy so that a cold, dense cloud can form

But in the early universe the first stars formed from H+He only. They slowly polluted the universe with dust and heavier atoms. But not all galaxies are as polluted as the Milky Way.

Dwarf galaxies as nearby sites of star birth at low abundances

Hubble Ultra Deep Field

HST - ACS

NASA, ESA, S. Beckwith (STScl) and The HUDF Team

STScI-PRC04-07a

Young dwarf galaxy?

But what are dwarf irregular galaxies?

Dwarf Irregular galaxies are irregular.

DDO 63

Hunter & Elmegreen, Lowell 1.1 m

Dwarf galaxies are tiny.

M74 Boroson/AURA/NOAO/NSF

DDO 75: A dwarf galaxy Hunter & Elmegreen, CTIO 0.9 m

Dwarf galaxies are faint.

Leo T

Leo T is comparable in brightness to a large star cluster that contains several million stars.

Irwin et al. 2007

Dwarf galaxy abundances are low.

DDO 75

Low in heavy elements

- Down to 1/60th solar
- Low in dust

Hunter & Elmegreen, CTIO 0.9 m

Star forming clouds at low abundances

Consequence of low abundances: change in structure of molecular cloud

Bolatto et al. 1999

Core usually traced by CO. Shell bright in [CII] λ 158 µm.

Collaborators

Phil Cigan (New Mexico Tech) - PhD dissertation on Herschel observations Celia Verdugo (Univ of Chile) – Master's student worked on APEX observations

Elias Brinks (Univ Hertfordshire) Bruce Elmegreen (IBM T J Watson Research Center) Monica Rubio (Univ of Chile) Caroline Simpson (Florida International University) Lisa Young (New Mexico Tech) Shrinking CO core means they are harder to detect: CO "detection barrier" of 20%×solar abundance

APEX – sub-millimeter telescope in the Atacama Desert

CO (3-2) Beam of 18" = 290 light years at WLM (87 parsecs)

Bérengčre Parise

We detected molecules in the most heavy element poor galaxy ever!

8x lower abundances than the Sun

Velocity of gas -

Elmegreen et al. 2013

WLM detection in context

Non-WLM data: Tacconi & Young 1987; Taylor et al. 1998 WLM data: Elmegreen et al. 2013

The molecular clouds in WLM

Masses of H_2 are $1-2 \times 10^5 M_{\odot}$

Star formation is occurring in giant molecular clouds even at 13%×solar abundances.

Elmegreen et al. 2013

Herschel observations of the shells of molecular clouds in 5 abundance-poor dwarf galaxies

Bolatto et al. 1999

Molecular core + shell – like a baseball in a glove


```
WLM - Region B:
```

Shell annulus \geq core diameter

Theoretical prediction: Size of shell \propto 1/abundance

Molecular cloud structure at 13% of solar abundances

NW molecular cores observed by ALMA

To come...

Molecular cloud structure:

- Herschel images of the molecular cloud shells
- ALMA maps of the CO cores

abundance relative to solar

WLM –	13%
DDO 155 –	10%
DDO 75 –	6%
DDO 69	5%

How does the molecular cloud structure change with abundance?
What difference does it make to the star formation?