
Significant Digits

Introduction

We are all comfortable with the use of significant digits and we all have an instinctive definition for 
them. When someone asks your age, you might reply, “I'm 18.” By that response, you specifically 
mean your age is 18.5 ± 0.5 years. Your age is somewhere between 18 and 19 years and you have used 
two significant digits to express that idea. You could have said, “I'm 18.4036211”, and that would have 
been a more accurate answer using nine significant digits but that answer would likely be no more 
helpful than the original. 

Loosely defined, significant digits are those digits in a number that are accurate and relevant in a 
particular situation. We generally employ our ideas about significant digits when we describe a 
measurement. For example, after measuring the size of a piece of paper with a meter stick, we could 
say the paper is 27.9 cm long (using three significant digits). We should not say the paper is 
27.91324973 cm long because the last six digits are not accurate. That is, they could not be measured 
accurately with a meter stick. 

We are all tempted to use more significant digits than we should. Long strings of digits pour from our 
calculators and computers and are mysteriously satisfying. That said, we all know that extra significant 
digits are often misleading. When we brag about our cow, saying “Bossy gave 3.29746238934 gallons 
of milk today!” we makes ourselves look silly.

Basic Rules

If we begin with the assumption that we have a number that is both accurate and relevant, we can state 
a few rules for counting the number of significant digits in the number.

1. All non-zero digits are significant. 

2. Zeroes placed at the beginning of a number before other non-zero digits are not 
significant; 0.032 has two significant digits. 

3. Zeroes placed between other digits are always significant; 1004 has four significant
digits.

4. Zeroes at the end of a number are significant if the number has a decimal point. 
There are several variations in the way this rule works. For example, 5.60 has 
three significant digits. 1230.00 has 6 significant digits and 23400. has five 
significant digits.

5. Zeros at the end of a number without a decimal point are ambiguous. We cannot 
tell if they are significant or not; 1230 might have three or four significant digits.

Scientific Notation

Scientific notation can often help us when we are confronted with an ambiguous number of significant 
digits because every digit used in “normalized” scientific notation is significant. (“Normalized” means 
one non-zero digit on the left of the decimal point and all the rest of the digits on the right.) The 
number 1230 might have three or four significant digits but when expressed as

1.230×103 ,



it has four and when expressed as

1.23×103 ,

it has three. 

Uncertainty

Again assuming all digits in a number a relevant and accurate, an important relationship exists between
the number of significant digits and its uncertainty. If we consider only the most basic kind of 
uncertainty, we can say we don't know anything about the value of the digit following the last 
significant digit. For example,

25.6±0.05

explicitly states our uncertainty, ±0.05, about the number 25.6 and its three significant digits. The 
number 26.5 can range anywhere between 25.55 and 25.65. 

The digit value of the uncertainty is often ±5 and it is one decimal place smaller than the last significant
of the number whose uncertainty it describes. The value of writing a number with explicit uncertainty 
is that it allows us to devise rules on how uncertainty (and significant digits) are propagated through 
mathematical operations like multiplication, division, and various other mathematical functions like, 
sine, cosine, logarithms and so on.

Rules of Propagation

In a calculation involving multiplication, division, trigonometric functions, and so on, the 
number of significant digits in the result should equal the least number of significant 
digits in any one of the arguments. Here are some examples.

253.49×0.000091=0.23
78.881
0.423

=186.

sin(22.25ο)=0.3786
e1.4423=4.2304

When we add or subtract, the number of decimal places (not significant digits) in the 
answer should be the same as the least number of decimal places in any of the numbers 
being added or subtracted. 

22.8+0.0014922=22.8
15.19+0.2199=15.41

The second example above indicates that we should perform the addition or subtraction 
using a few more digits than we expect in the final result. “Insignificant” digits can 
accumulate and become significant. 

When used in a calculation, we assume that integers or constants like e and π have an 
“infinite” number of significant digits. So, in the formula for the volume of a sphere of 
radius 7.23 cm, 

V=
4
3
π r 3

=1.58×103 cm3



even though 4 and 3 seem to have only one significant digit, we treat them as if they have
many. Then the number of significant digits in the result is controlled only by the number
of significant digits in the radius. Also, we should use a few extra digits to perform 
multiplication/division and then round the result to the correct number of digits.

Developing Rules of Propagation

When we attempt to develop the rules for propagation of uncertainty, we will discover we need a 
formula that tells us the number of significant digits in a number. Suppose we write a number with its 
uncertainty in a very general way like

x±δ x  

where x is the number and δx is its uncertainty. We know that the logarithm of a number greater than 
one counts the powers of 10. That counting corresponds to the number of digits on the left side of the 
decimal point and is almost what we want. We can scale the number by dividing it by its uncertainty 
and then we should have a formula that predicts the number of significant digits nx. That is,

nx= log( x
δ x)

The table below shows a few examples.

x log(x/δx) Sig. Digits

26.1±0.05 2.718 3

0.593±0.0005 3.074 3

7184.±0.5 4.157 4

9990±5 3.3009 3

10000.0±0.05 5.301 6

123432.00±0.005 7.392 8
The formula is not very robust because when x is negative, the logarithm is undefined. When x is near 
zero the formula predicts one significant digit. We can improve the formula by using the absolute value
of x in the numerator. Repairing the “near zero” problem is harder and introduces complexities that are 
not helpful in our discussion, so we will just assume that we never use arguments near zero. The reader 
may wish to revisit this discussion later and attempt to justify this omission.

Significant Digits in Addition/Subtraction

Suppose we have two numbers, a and b, that we wish to add. Each number has an associated 
uncertainty, δa and δb. When we add, we find

(a±δ a)+(b±δ b)=(a+b)±(δ a+δ b) .

That is, the result is the sum of a and b but it has an uncertainty that is is sum of the uncertainties of a 
and b. (Note that we have assumed that the values for δa and δb are positive.) The uncertainty in the sum
is the sum of the uncertainties. Expressed mathematically,

(a±δ a)+(b±δ b)=c±δ c

where



c=a+b
δ c=δ a+δ b

We can now state a rule of thumb for addition and subtraction. “The result of an addition/subtraction 
has an uncertainty at least as large as the uncertainty of the most uncertain of the arguments”. This 
statement is the equivalent of the addition statement in the “Rules of Propagation” because, in this case,
specifying the uncertainty is the same as specifying the number of decimal places.

Significant Digits in Multiplication/Division

We can consider multiplication and division using a similar notation. Since division can always be 
expressed as a multiplication, we will consider only multiplication. Suppose we have two numbers, a 
and b, that we wish to multiply. Each number has an associated uncertainty, δa and δb. When we 
multiply, we find

(a±δ a)(b±δ b)=ab±bδ a±aδ b±δ a δ n .

We can rewrite this expression as

(a±δ a)⋅(b±δ b)=c±δ c

where

c=ab
δ c=±bδ a±aδ b+δ aδ b

We will specify the number of significant digits in the result using the expression we developed earlier. 
That is,

nc=log( c
δ c) .

To make the mathematics a little easier, we should consider the inverse ratio, δc/c with the caveat that a 
and b cannot be zero.

δ c

c
=

±bδ a±aδ b+δ a δ b

ab
=±

δ a

a
±

δ b

b
+
δ aδ b

ab

Considering the three terms on the far right, notice that they all have factors of δx/x where x can be a or 
b and therefore each of the factors is referencing only one of the multiplicands. Each of these factors is 
less than one and it quickly shrinks as more significant digits are used in the multiplicand it references. 
The last term will always be much smaller than the other two because the product of two small 
numbers is a very small number. We can safely ignore the last term in comparison with the other two. 
We also need to be cautious with the signs. We cannot find the logarithm of a negative number so we 
will only use the plus signs in the expression. This convention should not change our final result. With 
these observations, we can write

nc=log( c
δ c)=−log(δ c

c )≈−log(δ a

a
+

δ b

b )
If the two multiplicands have the same number of significant digits, then δa/a and δb/b will be about the 
same size. We can then write



nc≈−log(2
δ a

a )=−log(δ a

a )−log (2)=−log(δ a

a )−0.30

Notice that the expression -log(δa/a) is the number of significant digits in first multiplicand (and also 
the second). The -0.30 term can be safely ignored because it represents about 1/3 of a significant digit. 
The result says that the number of significant digits in the answer is the same as the number of 
significant digits in the arguments.

If one of the numbers, say b, has more significant digits than a, δa/a will generally be much larger than 
δb/b. In this case, the δb/b term can be safely ignored. Assume the larger term is δa/a. Then we get

nc≈−log(δ a

a )
This result says that if a has fewer significant digits than b, the result has the same number of 
significant digits as a.

If a has more significant digits, we can exchange the a and b labels and get the same equation above 
but in each case, a represents the number with the fewer significant digits.

The rule of thumb for multiplication/division can now be stated as follows: “The result of a 
multiplication will have the same number of significant digits as has the argument with the fewer 
number of significant digits”. This statement is equivalent to the multiplication rule stated in the “Rules
of Propagation” section.

Significant Digits in Functions

Sine and Cosine

Let's begin with a simple equation involving the sine function.

y=sin(θ)

Assuming θ and y will have some uncertainty, we can write a more general expression including the 
uncertainties.

y±δ y=sin(θ ±δθ )  

Expanding this equation, we have

y±δ y=sin(θ )cos(δθ )±cos(θ )sin(δθ )

We will assume that δθ is always close to zero so cos(δθ) will always be close to 1. Similarly, since δθ is 
always close to zero know that sin(δθ) can be replaced by δθ (when is θ expressed in radians). Then we 
can rewrite the previous equation as 

y±δ y=sin(θ )±cos(θ )δθ

We can then make the following associations from the preceding equations,

y=sin (θ )
δ y=cos (θ )δθ

Since the number of significant digits in y can be expressed as



ny=log( y
δ y )

n y=log( sin(θ )

δθ cos(θ ))=log( tan(θ )
δθ

)
Because log(0) is not defined and because tan(θ) grows large at π/2 we will restrict the values of θ to

0<θ <π / 2

However, we can extend our final results to almost any value of θ using trigonometric relations.

For values of θ near zero we can approximate tan(θ) with θ and then we may write

n y=log( tan(θ )
δθ

)=log( θ
δθ

)=nθ

The rule of thumb is then, “The number of significant digits in the result of the sine function is the 
same as the number of significant digits in its argument”. But the equation also indicates that the 
number of significant digits near π/2 can be large. I believe this is true because the value of the sine 
function near π/2 is very nearly 1 and it is changing very slowly with θ. So even if the uncertainty in θ 
is large, the uncertainty in sin(θ) grows smaller near π/2. We could, in fact, use more significant digits 
in that region. However, doing so would make our rule of thumb complex and unwieldy. So let's leave 
the current rule of thumb as it is and be happy.

The arguments for the cosine function proceed in an identical manner so they will not be presented. 
Since 

tan (θ )=
sin (θ )

cos (θ )
,

we could apply the arguments for the sine and cosine function and then apply the argument for 
multiplication and, again, get the same result. That is, the result from a trigonometric function will have
the same number of significant digits as its argument.

Exponential

The exponential function is a special case of exponentiation. So the arguments in this section are valid 
whenever we use any form of exponentiation. We denote the exponential function as

y=e x .

If we think of uncertainty in the argument x as δx we can write

e x+δ x=e x
⋅eδ x

In all our previous analyses, the uncertainty was additive. In this case, it is multiplicative. We can 
convert it to an additive form with an advance technique. If we assume that δx is very nearly zero, we 
can use a few terms in a Taylor series expansion of the exponential function to approximate the value 
of the error coefficient. (A Taylor series expansion is a technique that requires calculus to fully 
understand but we can show the result.) That is, the Taylor series expansion of the exponential function 
about zero is



eδ x=
(δ x−0)

0

0!
+
(δ x−0)

1

1!
+
(δ x−0)2

2!
+
(δ x−0)3

3!
+…

eδ x=1+δ x+
δ x

2

2
+

δ x
3

6
+…

Powers of δx are extremely small when compared to 1 and δx so we will ignore them and consider only 
the first two terms of this expansion. That gives us

e x+δ x=e x
⋅(1+δ x )=e x

+δ x e x

and we can identify

y=ex

δ y=δ x ex

The second equation says the uncertainty in result of the exponential function is the uncertainty of the 
argument but increased in proportion to the result. That is, the number of significant digits in the result 
is the same as the number of significant digits in the answer. A quick example will show how the error 
propagation works.

x=7.43±0.005
ex

=1685.81±δ y

δ y=0.005⋅1685.81=8.429

e x
=1686±8

In other words, the argument, 8.43±0.005, has 3 significant digits and the result, 1686±8, also has three 
significant digits. 

Summary

Each function we examined, multiplication, trigonometric function, and exponential, has shown the 
same result: “The number of significant digits in the result is the same as the number of significant 
digits in its argument”. However, the details about how we showed this result varied with each function
and there is no guarantee that this results holds for all functions. If fact, it is a trivial exercise to show 
exceptions to the result. 

When we encounter a new function, our first assumption should be that the function follows the general
result: “The number of significant digits in the result of a function is the same as the number of 
significant digits in its argument”.
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