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ABSTRACT
The existence of strong absorption bands of singly deuterated methane (CH3D) at 

wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote 
measurement of D/H ratios in methane ice on outer solar system bodies.  We performed laborat-
ory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 µm to 
study CH3D bands at 2.47, 2.87, and 4.56 µm, wavelengths where ordinary methane absorption 
is weak.  We report temperature-dependent absorption coefficients of these bands when the 
CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these ab-
sorption coefficients can be combined with data from the literature to simulate arbitrary D/H ra-
tio absorption coefficients for CH4 ice and for CH4 in N2 ice.  We anticipate these results motiv-
ating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and 
Makemake.

1. Introduction
Deuterium (D or 2H) is a stable isotope of hydrogen (H) with one neutron in addition to the 

1



usual proton.  Most of the deuterium in the universe is thought to have originated in the big bang 
(e.g., Epstein et al. 1976) and it is consumed by nuclear reactions in stars, so the universe's total 
inventory declines over time.  In cold clouds of dust and gas, deuterium is strongly fractionated 
into the dust particles (e.g., Herbst 2003).  The deuterium enrichment of the dust component of 
the Sun's natal cloud provides opportunities to trace the evolution of that material during solar 
system formation.  Where presolar solids were vaporized they would return their deuterium to 
the nebular gas, but to the extent that these particles retain their deuterium-rich phases, bodies 
accreting from that solid material would be correspondingly enriched.  Processing of presolar 
dust particles is expected to have varied across the nebula, with more presolar grains surviving in 
colder nebular environments further from the Sun (e.g., Fegley 1999).  In the coldest, outermost 
parts of the nebula, deuterium could also fractionate into nebular dust particles via the same 
mechanisms responsible for its enrichment in interstellar dust (Fegley 1999), leading to even 
greater enrichment of the solids in those regions.

Evidence for contrasting D/H ratios among solar system bodies is well established.  The 
terrestrial D/H ratio of 1.5 × 10−4 (Robert et al. 2000) is considerably higher than the initial bulk 
solar system value, estimated to be 2.1 × 10−5 from observations of the atmospheres of Jupiter 
and Saturn (Lellouch et al. 2001).  H2O gas observed in the comae of four long period comets 
that may have formed in the Jupiter and Saturn forming region prior to being scattered into the 
Öort cloud (e.g., Duncan 2008) shows higher D/H ratios around ~3 × 10−4 (e.g., Meier and Owen 
1999; Altwegg and Bockelée-Morvan 2003; Villanueva et al. 2009).  Extreme heterogeneity of 
D/H in carbonaceous chondrites, and even within individual interplanetary dust particles (where 
localized regions with D/H ratios as high as ~8 × 10−3 have been found), is indicative of highly 
variable processing of presolar grains as well as complex mixing of nebular solids (e.g., Messen-
ger 2002; Busemann et al. 2006; Duprat et al. 2010).  Uranus and Neptune show enrichment as 
well, attributed to the substantial quantities of outer nebular solids they accreted in addition to 
nebular gas (e.g., Lutz et al. 1990; Encrenaz 2005).

The diverse populations of small, icy, outer solar system bodies that accreted from solids 
in peripheral parts of the protoplanetary nebula present a wealth of opportunities to sample addi-
tional nebular environments; measuring D/H ratios among these populations could be extremely 
valuable (e.g., Horner et al. 2007, 2008).  However, subsequent processes could have signific-
antly modified isotopic ratios on these bodies.  Volatile loss would have played a particularly 
important role in their evolution (e.g., Schaller and Brown 2007), elevating D/H ratios in their 
remaining volatile ices.  Additional processes that could continue to influence D/H ratios on the 
surfaces of these bodies include seasonal volatile transport cycles, photolysis and radiolysis, and 
ion-molecule chemistry (e.g., Brown and Cruikshank 1997).  Measuring D/H ratios could be 
valuable for studying those processes, as well.  Some outer solar system small body populations 
can be sampled by observing comets.  Ecliptic comets are thought to originate somewhere in the 
Kuiper belt (e.g., Duncan 2008), but we are not aware of any reported D/H ratios for ecliptic 
comets.  It would be even better to measure D/H for outer solar system bodies in situ, since op-
portunities may not exist to observe comets from some of the more interesting small body reser-
voirs, such as irregular satellites of giant planets, Trojans of Jupiter and Neptune, and detached 
Kuiper belt objects such as Sedna.  Also, by the time an object has become an ecliptic comet, it 
is hard to tell exactly where in the Kuiper belt it originated.

Unfortunately, no current observational technique is capable of measuring D/H ratios in 
small outer solar system bodies.  However, Pluto, Eris, and Makemake, three planet-sized ob-
jects in the Kuiper belt, all have near-infrared reflectance spectra dominated by strong vibration-
al absorptions of CH4 ice, offering the possibility of measuring D/H ratios in their surface ice. 
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To these we can add Neptune's large, retrograde satellite Triton, thought to have been captured 
from the Kuiper belt.  When one hydrogen atom in a CH4 molecule is replaced with deuterium, 
the result is singly deuterated methane CH3D.  The altered mass balance and symmetry of this 
molecule produces a distinct pattern of infrared vibrational absorption bands relative to ordinary 
CH4.  At wavelengths where ordinary CH4 absorbs least, photons can traverse the longest path 
lengths within that ice before being scattered out of the surface and potentially observed.  A 
strong CH3D band falling in one of these window regions would be particularly sensitive for 
measuring D/H ratios in CH4 ice by reflectance spectroscopy.  CH3D has been studied extens-
ively in the gas phase, and also condensed in liquid argon and in low temperature, cubic α N2 ice 
(e.g., Nelander 1985; Blunt et al. 1996; Nikitin et al. 2006).  These studies show that among the 
many near-infrared CH3D absorptions, some do occur in regions lacking strong CH4 absorptions, 
making measurement of D/H ratios in CH4 ice via remote observation seem possible.  We could 
not find published absorption coefficients for CH3D in CH4 ice at temperatures appropriate for 
the surfaces of Triton, Pluto, Eris, and Makemake, so we undertook a series of laboratory trans-
mission spectroscopy experiments to obtain the necessary data.  We also studied CH3D diluted in 
the higher temperature, hexagonal β phase of N2 ice because CH4 diluted within that phase is 
known to exist on Triton and Pluto (e.g., Quirico and Schmitt 1997; Quirico et al. 1999; Douté et 
al. 1999).

2. Experimental Proced
ures

The experiments reported in 
this paper were done in a new labor-
atory ice facility located in the De-
partment of Physics and Astronomy 
of Northern Arizona University.  Ice 
samples were crystallized within an 
enclosed cell (Fig. 1) fitted with 
windows to allow a spectrometer 
beam to pass through the ice.  De-
tailed descriptions of this facility 
and our sample measurement pro-
cedures have been published by Te-
gler et al. (2010).  Subsequent to that 
paper, we implemented several cru-
cial improvements.

The primary change was the 
addition of an infrared MCT (mer-
cury cadmium telluride) type A de-
tector, cooled with liquid nitrogen. 
This detector is sensitive from below 
1 µm to beyond 10 µm, although our 
use of sapphire windows on the 
sample cell limits us to operating in 
the ≤ 6 µm range.  Still, this is a sub-
stantial extension over our 
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Fig. 1: Schematic diagram of a sample cell in cross section.  Cells for 
various sample thicknesses were machined out of blocks of aluminum 
alloy 7075 in the Lowell Observatory instrument shop.  Sapphire win-
dows are forced against indium wire, sealing the central cylindrical 
sample volume.  The fill tube is stainless steel, with a threaded junc-
tion sealed with teflon tape.  T1 and T2 indicate diode thermometers 
mounted on copper rods press-fit into the cell.  H1 and H2 indicate 50 
Ohm nickel-chromium heater wires wrapped around the exterior of 
the cell.  The thermometers and heating elements are used to control 
the temperature of the cell and the thermal gradient across the sample, 
as described by Tegler et al. (2010).



wavelength coverage using only the 
silicon detector described by Tegler 
et al. (2010).  Operating at infrared 
wavelengths necessitated several ad-
ditional changes.  To overcome in-
frared absorptions intrinsic to our 
system, we replaced our glass lenses 
with off-axis aluminum paraboloid 
mirrors (see Fig. 2), and replaced the 
glass windows on the vacuum en-
closure with sapphire windows.  Ab-
sorption by water vapor and CO2 in 
the ambient room air was minimized 
by bagging as much of the optical 
path as we could and purging the 
bagged volume with air from which 
these two species had been removed 
by a Whatman purge gas generator 
(unfortunately, it was not possible to 
purge the entire optical path and still 
be able to easily monitor the cell 
contents by eye).  For best sensitivity 
at shorter wavelengths (λ < 2.5 µm) 
we used a quartz halogen lamp and a 
quartz beamsplitter.  At longer 
wavelengths (λ > 2.5 µm), an in-
frared glowbar light source and a 
KBr (potassium bromide) beamsplit-
ter gave better results.  In practice, many experiments were done twice, recording a complete 
temperature series using each configuration.  The substantial region of overlapping wavelengths 
between the two (roughly 1.7 to 3.4 µm) provided a useful check on consistency of results.

To facilitate preparation of mixed samples, we also added a mixing volume of approxim-
ately 2 liters, monitored by a pair of Baratron capacitance manometers covering the range from 
10−3 to 10+3 torr.  Samples were mixed at room temperature in this volume using CH4 and N2 

gases supplied in high pressure cylinders by Airgas Specialty Gases.  These were connected 
through separate pressure regulators and valves to the mixing volume.  The reported purities 
were ≥ 99.99% for the CH4 and ≥ 99.9% for the N2.  To these gases, we could add CH3D pur-
chased in a lecture bottle from Sigma Aldrich (product number 490237, with a reported purity of 
≥ 98%).  Unlike in water, proton-deuteron exchange is negligible in methane at room temperat-
ure and below, so we did not need to consider the formation of other isotopomers such as CH2D2, 
CHD3, etc. (Sigma Aldrich Stable Isotope Department, personal communication 2010).  After 
mixing gases to the desired composition at room temperature in the mixing volume, we opened a 
valve to allow the gas to flow into the empty, cold cell, condensing it as a liquid.  We froze this 
liquid by reducing its temperature, maintaining a vertical thermal gradient of about 2 K across 
the 15 mm diameter sample by means of heaters (see Fig. 1), so that it would freeze from the 
bottom upward, with the location of the freezing front being controlled by the cell temperature. 
Each new mixture requires some experimentation to find appropriate cooling rates, but rates for 
freezing samples were typically in the range of −0.01 to −0.1 K/min.  It was sometimes neces-
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Fig. 2: Layout of optical elements, showing the spectrometer beam 
bounded by dashed lines.  The beam is focused into the sample 
volume by an off-axis paraboloid mirror, then two more identical mir-
rors re-focus the beam onto one of two detectors, with the third mirror 
being movable to select the appropriate detector.  After accounting for 
vignetting, the focal ratio of the converging beam is about 5.  The vis-
ible detector was not used in this experiment.



sary to freeze an initial polycrystalline mass and then melt almost all of it to obtain a small seed 
crystal before re-freezing slowly, in order to obtain an optical-quality ice sample.  After a suit-
able sample had been frozen, we removed the thermal gradient by smoothly shifting temperat-
ure-control heating from the upper to the lower heating element over a period of 10 to 20 
minutes.  Using only the bottom heater for temperature control resulted in a thermal gradient 
across the sample of just a few tenths of a Kelvin.

Spectra were recorded with a Nicolet Nexus 670 Fourier transform infrared (FTIR) spec-
trometer at a sampling interval of 0.24 cm−1, resulting in a spectral resolution of 0.6 cm−1 (meas-
ured full width at half maximum of unresolved lines).  The spectrometer beam was focused to a 
few mm spot inside the cell.  We typically averaged over 100 spectral scans to improve the sig-
nal/noise ratio.  After a sample spectrum had been recorded, we would ramp to a new temperat-
ure, at rates typically in the range of 0.1 to 0.5 K/min.  We recorded spectra through our ice 
samples at every multiple of 10 K between 40 K and the host ice melting points (90.7 K for CH4 

ice, 63.1 K for N2 ice).

Before each ice sample was prepared we also recorded spectra through the empty, cold 
cell, and did the same after each sample was eliminated.  Filled-cell spectra were divided by 
empty-cell spectra to remove gross effects of lamp emission, detector sensitivity, and absorp-
tions by the windows and air, resulting in approximate transmission spectra T(λ).  These spectra 
are affected by subtle, spurious slopes from a variety of sources.  Wavelength-dependent refract-
ive index contrasts exist between ice and cell windows leading to slightly different transmission 
through the ice-window interface than through the vacuum-window interface.  The room temper-
ature refractive index n(λ) of sapphire decreases gradually with wavelength from about 1.76 to 
1.59 from 1.0 to 5.5 µm (Malitson et al. 1958; Gervais 1991) but methane ice shows almost no 
wavelength dependence in its refractive index (except at wavelengths near 3.3 µm where absorp-
tion is so strong that we measure no transmission whatsoever; Pearl et al. 1991).  If we knew the 
temperature dependent n(λ) of both sapphire and ice, and the ice-window interfaces were solely 
responsible for these slopes, we could easily correct for the effect.  But as the ice and the sur-
rounding cell contract on cooling, each with their own distinct temperature-dependent coeffi-
cients of thermal expansion, the sample is stressed and can fracture or pull away from the win-
dows, opening additional ice-vacuum interfaces that can produce wavelength-dependent scatter-
ing that varies with temperature, with thermal history, and with location within the sample.  In 
addition to imparting slopes, these effects lead to a decline in overall transmission, by as much 
as a factor of three in an ice sample cooled relatively rapidly from 90 to 40 K.  Slow drifts in 
lamp filament temperature or detector sensitivity over the course of experiments lasting multiple 
days can also contribute spurious slopes.  Slopes arising from any combination of the above 
factors were removed by fitting a line or low-order polynomial to continuum regions adjacent to 
absorption bands to be quantified and dividing by this function to “straighten out” the con-
tinuum.  The continuum-corrected transmission spectra were then converted to Lambert absorp-
tion coefficient spectra α(λ) via the Beer-Lambert absorption law, rearranged as 
 = −ln T /d , where d is the path length through the cell (d = 5.4 ± 0.1 mm for all ex-
periments reported in this paper).

2.1 CH3D diluted in CH4

We added a small amount of CH3D to CH4 to produce a deuterium-enriched sample that 
remained dominated by normal CH4 absorptions.  Addition of 0.5% CH3D (D/H ratio of 
1.25 × 10−3) produced ice having sufficiently strong CH3D absorption to be easily measurable, 
but not so strong as to be saturated in transmission though our 5.4 mm optical path length.  We 
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were not able to directly measure the D/H ratio in our ice sample, so we assumed zero fractiona-
tion between the gas phase and the liquid condensed from it, and again zero fractionation 
between the liquid and the solid crystallized from it.  Many ordinary CH4 bands were saturated 
in this sample, but this was not a problem because we were only interested in wavelengths where 
CH4 absorbs weakly.  Comparing transmission spectra of ordinary CH4 ice with spectra of the 
enriched ice mixture, three regions between 1 and 6 µm meet our criterion of having strong 
CH3D absorption features coinciding with weak CH4 absorption, necessary to detect minute 
quantities of CH3D against a background of much more abundant ordinary CH4 ice.  Transmis-
sion spectra through 40 K ice samples are shown in Fig. 3.
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Fig. 3: Transmission spectra of normal CH4 ice (black curves) and of CH4 ice enriched with 0.5% CH3D (red 
curves), both at 40 K.  Potentially useful CH3D bands are marked with blue stars, and shown in greater detail in the 
lower panels.  These three spectral regions where deuterium-enriched methane exhibits absorptions but normal CH4 

shows high transmission are of particular interest for remote spectroscopic measurement of D/H ratios in CH4 ice. 
Note that at the wavelength of each CH3D absorption band, the ordinary methane also shows a weak feature, since 
some CH3D is present in the ordinary methane.  Narrow, spiky features are residual absorptions from ambient air, 
indicating wavelengths unobservable from ground-based telescopes.



The lower right panel of Fig. 3 shows a region in which Grundy et al. (2002) had tentat-
ively identified two bands at 4.34 and 4.56 µm as being caused by CH3D.  Our new spectra of 
ordinary CH4 (black curve) and of CH4 enriched in CH3D (red curve), clearly confirm CH3D as 
the cause of these two bands.  Even the CH4 spectrum shows some absorption at these 
wavelengths, because there is a small amount of CH3D present in ordinary laboratory-grade CH4. 
The noisy region around 4.20 to 4.35 µm results from imperfect cancellation of strong CO2 ab-
sorptions from the ambient air.  That spectral region is unobservable from ground-based tele-
scopes, but could be observed from space-based platforms.  The 4.56 µm band occurs in the M-
band atmospheric window, and could potentially be observed from the ground.  The lower 
middle panel shows a CH3D absorption band at 2.87 µm, on the shoulder of the strong ν3 funda-
mental of CH4 centered at 3.3 µm.  The 2.87 µm band roughly coincides with the short 
wavelength limit of the L-band atmospheric window.  The lower left panel shows a CH3D ab-
sorption band at 2.47 µm, in a region of relatively weak absorption between adjacent strong CH4 

bands.  The 2.47 µm band falls within the K-band atmospheric window (albeit near the long 
wavelength limit).  Another comparably strong CH3D band is raising the continuum at the left of 
this band, but strong absorption by ordinary methane at those wavelengths prevents us from 
computing accurate absorption coefficients, and would, in any case, limit its value for remote 
sensing of D/H ratios in CH4 ice.  Both the 2.47 and 2.87 µm CH3D bands could potentially be 
observed from a high altitude, ground-based site.

In each of these three wavelength regions, we subtracted the ordinary methane absorption 
coefficients (computed from the black curves in Fig. 3) to isolate the contribution of the CH3D. 
The resulting CH3D ice absorption coefficients were divided by the 0.5% concentration of the 
CH3D (assuming the composition was unchanged by condensation and freezing) to obtain effect-
ive absorption coefficients for CH3D in methane as if it were pure CH3D.  These values, shown 
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Fig. 4: Effective absorption coefficients of three absorption bands of CH3D diluted in methane ice, as a function of 
temperature in 10 K increments starting at 40 K on the bottom and ending with 90 K on top.  Each successive spec-
trum is shifted upward by 25 cm−1 in the left two panels and by 200 cm−1 in the right panel.  Absorption coeffi-
cients for an arbitrary ratio of CH3D/CH4 can be simulated with an appropriately weighted combination of these ab-
sorption coefficients and those of normal methane.



in Fig. 4, can be combined with ordinary CH4 ice absorption coefficients, scaled by their relative 
abundances, to approximate absorption coefficients for arbitrary CH3D/CH4 mixing ratios, as 
will be discussed in Section 3.

For all of these bands, some effect of CH3D absorption can also be seen in the CH4 ice 
spectrum, indicating that the ordinary CH4 used in our experiments has a non-zero fraction of 
CH3D in it.  The effect of this small quantity of CH3D needs to be subtracted off to properly dis-
tinguish between the absorptions of CH3D and CH4.  Assuming that all of the 4.56 µm absorp-
tion band can be attributed to CH3D, we can use our new CH3D absorption coefficients to de-
termine how much CH3D was present in our CH4 gas, by finding the amount of CH3D absorption 
that must be subtracted to eliminate any trace of the observed band.  The result is a CH3D/CH4 

ratio of (3.2 ± 0.1) × 10−4, corresponding to a D/H ratio of (8.0 ± 0.3) × 10−5.  Applying the same 
procedure to the CH4 absorption coefficients published by Grundy et al. (2002), using methane 
from Air Liquide Corporation in France, we obtain very similar CH3D/CH4 and D/H values of 
(3.3 ± 0.1) × 10−4 and (8.3 ± 0.3) × 10−5, respectively.  Naturally occurring terrestrial methane 
has D/H ratios in the 1.1 × 10−4 to 1.4 × 10−4 range (Schoell 1980).  This is depleted relative to 
the D/H ratio of ~1.5 × 10−4 in terrestrial water, but less depleted than we estimate for both labor-
atory methane samples, leading us to speculate that the purification process used to remove high-
er molecular mass hydrocarbon contaminants also removes some CH3D.  Alternatively, we could 
have assumed that the ordinary methane in both labs produced ice with a typical terrestrial meth-
ane D/H ratio of 1.25 × 10−4, in which case our CH3D-enriched ice sample must have had a D/H 
ratio a factor of 1.6 higher than the CH3D-enriched gas from which it was made.  Our reported 
absorption coefficients would then be too high by this same factor of 1.6.  This uncertainty about 
the composition of the ice sample substantially limits the precision of our derived absorption 
coefficients.

From our temperature series we were able to study the temperature-dependent behavior of 
the CH3D absorption bands.  At lower temperatures, they become narrower.  The same behavior 
occurs in normal CH4 ice (Grundy et al. 2002).  The narrowing effect reveals the presence of ad-
ditional weak side bands, such as one at about 2.897 µm.  Also at lower temperatures, all three 
of the strong CH3D bands show a subtle shift to longer wavelengths.  In frequency units, this 
shift averages 2.2 cm−1 over the temperature interval from 90 to 40 K.  Such a thermal shift has 
not, to our knowledge, been reported in ordinary CH4.  It could be an indication of a subtle, tem-
perature-dependent vibrational coupling between CH3D molecules and neighboring CH4 mo-
lecules.

We note that numerous additional CH3D bands exist, such as at 1.56, 1.89, 1.92, 1.94, 
2.24, 2.40, and 3.01 µm.  Some of these other absorptions have been used previously for measur-
ing CH3D/CH4 ratios in gaseous methane in outer solar system atmospheres (e.g., Lutz et al. 
1983; de Bergh et al. 1986, 1988, 1990), and some of these bands can be seen in our data as well. 
But compared with the three bands we focus on, these other CH3D absorptions are either much 
weaker or they coincide with stronger ordinary CH4 ice absorptions.  To measure meaningful 
D/H ratios using these other bands would require telescopic observations with much higher sig-
nal precision.

2.2 CH3D diluted in N2

Much of the methane ice observed in the outer solar system exhibits bands shifted to 
slightly shorter wavelengths, indicative of dilution in another ice.  On Pluto and Triton, that ice 
has been identified as the hexagonal β phase of N2 ice by direct observation of the 2.15 µm ab-
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sorption band of N2 ice (e.g., Cruikshank et al. 1984; Owen et al. 1993; Grundy et al. 1993).  On 
Eris and Makemake, smaller CH4 shifts have also been observed and tentatively attributed to di-
lution in N2 ice (e.g., Licandro et al. 2006a,b; Dumas et al. 2007; Abernathy et al. 2009; Merlin 
et al. 2009; but see also Tegler et al. 2010 who point out that argon ice can also shift CH4 bands, 
much as nitrogen ice does).  Where the concentration of methane exceeds its solubility limit in 
N2 ice, methane-rich and nitrogen-rich phases will coexist (e.g., Prokhvatilov and Yantsevich 
1983; Lunine and Stevenson 1985), a situation that has already been seen in spectra of Pluto and 
Eris (Douté et al. 1999; Tegler et al. 2010).

To investigate possible effects of dilution in N2 ice on the absorption bands of CH3D, we 
performed an experiment with CH3D diluted in the hexagonal β phase of N2 ice.  N2 ice melts at 
63.1 K, so this experiment spanned a smaller range of temperatures than described in the previ-
ous section.  Uncertainty over the CH3D concentration in the ice presented even more of a chal-
lenge with this experiment.  The CH3D/N2 ratio mixed in the gas phase in the mixing volume 
could not be expected to remain unchanged in the ice, for two reasons.  First, methane is much 
less volatile than nitrogen.  On condensing the N2-dominated gas into the cell as a liquid at about 
65 K, some of the deuterated methane could have condensed as frost somewhere in the inlet tube 
rather than making it into the cell.  Second, compositional gradients appear on freezing, as a res-
ult of the separation between liquidus and solidus curves of the binary phase diagram of nitrogen 
and methane (e.g., Prokhvatilov and Yantsevich 1983; unfortunately, the two curves are difficult 
to distinguish in their figure).  Quirico and Schmitt (1997) assumed that the integrated absorp-
tions of CH4 bands remain unchanged on dilution in N2 ice in order to estimate the composition 
of their samples.  Making the same assumption for CH3D, we used the integrated absorption of 
the 4.56 µm CH3D band from the previous section to estimate the CH3D fraction in our mixed 
CH3D+N2 ice sample as 0.0024 ± 0.0002 (about a factor of two below its gas phase abundance 
of 0.005).

9

Fig. 5: Transmission spectrum of CH3D diluted in β N2 ice at 40 K, divided by a transmission spectrum of N2 ice at 
the same temperature to remove the broad N2 ice absorption around 4.1 to 4.4 µm.  This spectrum shows CH3D ice 
bands listed in Table 1, including a number of bands that are masked by strong CH4 absorptions when ordinary CH4 

ice is present.  The gray area is particularly strongly affected by atmospheric CO2 absorption.



As before, we subtracted the absorption coefficients of the host N2 ice, studied in an other-
wise identical separate experiment in our laboratory, to isolate the CH3D absorptions.  Unlike in 
CH4 ice, saturated bands of the host ice were not a problem in this experiment and we were able 
to measure CH3D bands over a broader range of wavelengths.  A transmission spectrum of CH3D 
diluted in N2 ice at 40 K is shown in Fig. 5, revealing numerous absorption features listed in 
Table 1.  Absorption bands of N2-diluted CH3D are compared with their CH4-diluted counter-
parts in Fig. 6.  On dilution in N2 ice, we observed the CH3D bands shift to shorter wavelengths 
and become narrower.  This behavior is both qualitatively and quantitatively very similar to that 
of ordinary CH4 bands diluted in N2 ice (Quirico and Schmitt 1997).
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Fig. 6: Comparison between effective absorption coefficients of CH3D in methane ice (solid curves) and in nitro-
gen ice (dotted curves).  Lower curves are for 40 K ice.  Upper curves are for 60 K ice, offset upward by 120 cm−1 

in the left two panels and by 1000 cm−1 in the right panel.  Dissolved in β N2 ice, the CH3D absorptions become 
narrower and shift to shorter wavelengths.  Note that the integrated area of the 4.56 µm band was assumed to be 
the same for CH3D in CH4 and in N2 in order to estimate the concentration of CH3D in the N2 ice.



Table 1

Locations of observed CH3D absorption bands

Band assignment
CH3D in CH4 CH3D in N2

λ (μm) ν (cm−1) λ (μm) ν (cm−1)

ν4 + 2ν6 1.89 5290 1.88 5310

ν4 + ν5 - - 2.24 4470

2ν2 - - 2.32 4340

ν4 + ν6 - - 2.40 4160

ν1 + ν6 - - 2.43 4110

2ν3 + ν5 2.47 4040 2.47 4050

3ν6 and ν2 + ν3 2.87 3470 2.86 3490

ν2 + ν6 3.01 3330 3.00 3340

ν4 - - saturated saturated

ν1 - - 3.37 2970

2ν5 (E) - - 3.41 2930

2ν5 (A1) - - 3.44 2910

ν3 + ν5 - - 3.61 2770

ν5 + ν6 - - 3.81 2620

2ν3 - - 3.86 2590

ν3 + ν6 4.08 2450 4.07 2460

2ν6 4.34 2310 4.33 2310

ν2 4.56 2190 4.55 2200

Table note: Band assignments are from Blunt et al. (1996) and Nikitin et al. (2006).  Dashes indicate bands 
that could not be measured in CH4 ice due to the presence of strong CH4 absorptions.

3. Models
Using the absorption coefficients reported here in conjunction with data from the literature, 

it is possible to simulate absorption coefficients  r for CH4 ice with an arbitrary D/H ratio r, as-
suming the deuterium is in the form of CH3D and not more highly deuterated species, and ignor-
ing possible concentration-dependent changes in vibrational coupling with neighboring ordinary 
CH4 molecules.  Subject to these assumptions, absorption coefficients can be simulated both for 
CH4 ice, and for CH4 highly diluted in N2.  For CH4 ice, the first step is to compute synthetic 
deuterium-free CH4 absorption coefficients CH4

 by subtracting the CH3D contribution CH3 D 
from the Grundy et al. (2002) absorption coefficients G'02, now that we have estimated the 
CH3D/CH4 ratio in that sample to have been 3.3 × 10−4 (in Section 2.1, assuming no appreciable 
isotopic fractionation between gas, liquid, and solid phases),
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CH 4
= 1.00033G'02 − 0.00033CH3 D . (1)

Next, convert the desired D/H ratio r to a CH3D fraction f, accounting for the numbers of hydro-
gen atoms in each type of molecule,

f =
4 r

1r
. (2)

Finally, use f to weight the separate spectral contributions of the synthetic deuterium-free CH4 

and of CH3D to the simulated absorption coefficients  r,

r = 1−f CH 4
 f CH 3 D . (3)

For CH4 diluted in N2 ice, the process is the same, except that the starting point is the nitro-
gen-diluted CH4 absorption coefficients of Quirico and Schmitt (1997) which should share the 
same CH3D/CH4 ratio of 3.3 × 10−4, since those samples were produced approximately contem-
poraneously from the same high pressure CH4 gas bottle (again assuming no isotopic fractiona-
tion of CH4 on preparation of N2-diluted ice samples in either laboratory).

The synthetic absorption coefficients  r can be input to a radiative transfer model to see 
how CH4 ice with a particular D/H ratio would appear in reflectance.  Better yet, such a model 
can be numerically inverted to infer the D/H ratio of the ice from observations of CH3D absorp-

12

Fig. 7: Model reflectance spectra for various D/H ratios in 40 K CH4 ice, loosely based on Triton (top) and Make-
make (bottom).  The black curve is for D/H = 0, and red, green, and blue curves are for D/H ratios of 10−5, 10−4, and 
10−3, respectively.  In the Triton models, small bumps and wiggles arise from noise in the diluted CH4 optical con-
stants, and CO2 ice absorptions contribute features at 2.845 and 2.905 µm.



tion bands in spectra of outer solar system bodies with strong CH4 absorptions, such as Pluto, 
Triton, Eris, and Makemake, subject to the additional assumptions inherent in such models.  For 
illustration purposes, we used a Hapke model (e.g., Hapke 1993) to compute example reflect-
ance spectra, accounting for multiple scattering in a compositionally homogeneous, particulate 
surface.  From the depths of their CH4 absorptions, we selected Triton and Makemake as bound-
ing cases.  Triton has the shallowest CH4 bands of the four, and Makemake has the deepest.  Ad-
ditionally, Triton's CH4 bands are shifted to wavelengths associated with CH4 highly diluted in 
N2 ice (Quirico and Schmitt 1997; Grundy et al. 2010), while Makemake's CH4 bands are only 
slightly shifted, indicating that much less of its CH4 is diluted in N2 ice (e.g., Licandro et al. 
2006a; Tegler et al. 2008).  For Triton, we used the Quirico et al. (1999) “best” model, with all 
of the CH4 simulated as being dissolved in N2.  For Makemake, we constructed a simple model 
consisting of 300 µm grains of undiluted CH4 ice.  These simple models were computed for a 
series of D/H ratios, shown in Fig. 7.

For a given D/H ratio, the CH3D bands in Fig. 7 are less deep in the Triton model than in 
the clean CH4 ice model, because there is less CH4 absorption overall.  This is partly because 
mean optical path lengths in CH4 ice are smaller on Triton and partly because 45% of the Triton 
model surface has no CH4 ice on it at all, being composed of H2O and CO2 ices.  It is also due to 
the fact that, at longer wavelengths, continuum absorption (absorption at wavelengths without 
apparent absorption bands) is much higher in the diluted CH4 optical constants of Quirico and 
Schmitt (1997) than it is in the pure CH4 optical constants of Grundy et al. (2002), especially 
beyond 4 µm, where they differ by about two orders of magnitude.  The much higher continuum 
absorption in the diluted optical constants has the effect of diminishing the spectral contrast of 
weak absorption bands in the reflectance model and diminishes the sensitivity of the 4.56 µm 
band so much in the Triton model that the 2.47 µm band is almost as sensitive for detecting 
CH3D ice.  It is unclear whether this much higher continuum in the diluted ice is real, since ab-
sorption at continuum wavelengths is by its nature difficult to measure.  Future experiments with 
thicker samples of CH4 diluted in N2 could perhaps resolve this question.  It is also worth noting 
that the depths of observed CH3D absorption bands are highly dependent on the surface config-
uration, so it is essential to do a full spectral model to simultaneously constrain the D/H ratio 
along with other compositional and textural parameters.  A number of additional factors liable to 
complicate interpretation of D/H ratios in solar system CH4 ice are discussed by Brown and 
Cruikshank (1997), including possible vibrational coupling effects between isotopically shifted 
CH3D bands and the bands of ordinary CH4.  Isotopic stratification is also possible due to frac-
tionation effects associated with volatile transport.  Indeed, spatially resolved D/H observations 
coupled with compositional and geomorphological studies could be particularly revealing of 
volatile transport history, and with these new laboratory data, may soon become possible when 
New Horizons explores Pluto in 2015 (Young et al. 2008).  Finally, D/H ratios in outer solar sys-
tem CH4 ice could tell a distinct story from D/H ratios in water, since water and methane have 
different chemical histories and different proton exchange behaviors.

4. Conclusion
Between 1 and 6 µm, we investigate spectral regions where strong CH3D ice absorptions 

coincide with weak absorption by ordinary CH4 ice, a condition that could enable remote meas-
urement of CH3D and thus D/H ratios in CH4 ice even when CH3D is vastly outnumbered by or-
dinary CH4 molecules.  Three CH3D bands at 2.47, 2.87, and 4.56 µm look especially promising 
for this purpose.  All three wavelengths can be observed from ground-based telescopes, albeit 
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with some difficulty due to absorption by the terrestrial atmosphere.  They would be readily ac-
cessible to space-based instruments, as would a fourth band at 4.34 µm.  We report new temper-
ature-dependent absorption coefficients for the spectral contribution of CH3D in CH4 ice, subject 
to the assumption of no appreciable isotopic fractionation of CH4 in our experiment between gas, 
liquid, and solid phases (if such fractionation did enrich the CH3D in our ice samples, we have 
overestimated its absorption coefficients).  We also report temperature-dependent absorption 
coefficients for CH3D diluted in β N2 ice, further assuming that the integrated areas of the CH3D 
bands remain unchanged for CH3D in CH4 and in N2 ice.  As with ordinary CH4, CH3D absorp-
tion bands shift to slightly shorter wavelengths and become narrower when CH3D is dispersed in 
N2 ice.  We expect that these new laboratory measurements will enable the scientific potential of 
deuterium to be extended by observers to smaller bodies that formed further out in the protoplan-
etary nebula.
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