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2Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
3Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111, USA
4Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
5Millennium Institute of Astrophysics, Santiago 22, Chile
6Department of Physics and Astronomy, Louisiana State University, 202 Nicholsom Hall, Baton Rouge, LA 70803, USA
7Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001, USA
8Institut de Planétologie et d’Astrophysique de Grenoble, Observatoire de Grenoble, 3800 Grenoble, France

Accepted 2019 January 9. Received 2019 January 9; in original form 2018 July 17

ABSTRACT
We propose a method to overcome the usual limitation of current data processing techniques
in optical and infrared long-baseline interferometry: most reduction pipelines assume uncor-
related statistical errors and ignore systematics. We use the bootstrap method to sample the
multivariate probability density function of the interferometric observables. It allows us to
determine the correlations between statistical error terms and their deviation from a Gaussian
distribution. In addition, we introduce systematics as an additional, highly correlated error
term whose magnitude is chosen to fit the data dispersion. We have applied the method to
obtain accurate measurements of stellar diameters for underresolved stars, i.e. smaller than
the angular resolution of the interferometer. We show that taking correlations and systematics
has a significant impact on both the diameter estimate and its uncertainty. The robustness
of our diameter determination comes at a price: we obtain 4 times larger uncertainties, of a
few per cent for most stars in our sample.

Key words: methods: data analysis – techniques: interferometric – stars: fundamental param-
eters.

1 IN T RO D U C T I O N

Long-baseline interferometry consists in recombining the light
from several telescopes to measure interference fringes on an
astronomical object (Lawson 2000). The key observable is the
visibility, a complex number containing the contrast and phase
of fringes obtained on a telescope pair. It was first introduced in
radioastronomy (Bracewell 1958) to generalize Michelson’s term
(a synonym for contrast in Michelson & Pease 1921). In the ideal
case, the visibility is the Fourier transform of the object’s image
taken at a spatial frequency related to the telescope separation
(Bracewell 1958; Honsberger 1975; Labeyrie 1975). In the infrared
and optical, though, the atmospheric turbulence shifts the fringes
in milliseconds, so that only the square visibility amplitude and
partial phase information can be retrieved (Roddier & Lena 1984),
for instance via the closure phase, the sum of phases over a
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telescope triplet (Roddier 1986; Cornwell 1987). A robust deter-
mination of the uncertainties on these observables is paramount to
ensure confidence on the physical parameters derived from model
fitting.

‘Statistical’ errors – deviations of expected mean zero – on
interferometric observables are produced by fast-varying intrinsic,
atmospheric, and instrumental effects. In addition to the detector and
photon noises, a few sources of errors that have been observed at
the Very Large Telescope Interferometer (VLTI) are the differential
atmospheric piston (Colavita 1999; Esposito, Riccardi & Femenı́a
2000), imperfect fibre injection (Kotani et al. 2003), mechanical
vibrations (Le Bouquin et al. 2011, section 5.6), background
fluctuations (Absil et al. 2004), detector efficiency variations due
to cooling cycle (Absil et al. 2004), and 50 Hz electronic noise
from the power grid (Absil et al. 2004). The relatively large number
of sources of uncertainties made it difficult to obtain a reliable
assessment of the precision of interferometric measurements. In
particular, the theoretical estimate using photon and detector noises
is unrealistically low, so most processing software tools need
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heuristics to provide a better one, for instance using the dispersion
of a given data set. One of the common pitfalls is the assumption
that the statistical errors on visibility measurements are uncorrelated
(Meimon 2005) and follow a Gaussian distribution. In particular,
most public data processing software tools do not determine
these correlations, in particular those for the VLTI instruments
MIDI1 (Hummel & Percheron 2006), AMBER2 (Millour et al.
2008), PIONIER3 (Le Bouquin et al. 2011), and GRAVITY (ESO
GRAVITY pipeline team 2018). The same happens with popular
model-fitting tools (e.g. Litpro; see Tallon-Bosc et al. 2008) or
image reconstruction programmes (e.g. MIRA; see Thiébaut 2008).
Also, the Optical Interferometric FITS (OIFITS v. 1; see Pauls
et al. 2005) format did not provide a codified way to document
correlations in its first and most used version. Only recently has an
update to the standard given specifications for a covariance matrix
(OIFITS v. 2; see Duvert, Young & Hummel 2017).

The assumption of uncorrelated Gaussian measurement errors
could not be further from the truth. For instance, closure phases
are not independent (Monnier 2007). Also, several random effects
impact the different spectral channels of a same observation in
the same way, such as the blurring of fringes due to the turbulent
atmosphere (Lawson 2000, section 7.5 ‘Atmospheric Biases’).
Finally, all observations of an observing sequence are impacted
in the same way by the errors on the calibrators, virtually leading
to correlations between all data points (Perrin 2003), even collected
in different runs at different facilities. The assumption that the
fringe contrasts or phases follow a Gaussian distribution is not
confirmed by experience either (Schutz et al. 2014, in the case of
AMBER). Also, when deriving the instrumental transfer function,
a weighted average of square visibilities and closure/differential
phases is obtained, using a few calibrators observed close to the
science targets. In most cases this average does not follow Gaussian
distribution, as Perrin (2003) notes.

For these reasons, Perrin (2003) proposed an analytic formalism
to propagate the non-Gaussian correlated uncertainties of the square
visibility amplitudes in an approximate, yet relatively accurate
way. Several authors have applied these results to the FLUOR4

instrument (at IOTA,5 then CHARA,6 see for instance Perrin et al.
2004; Absil et al. 2006; Berger et al. 2006), to our knowledge the
only one for which correlations have been regularly determined.

In addition to the statistical errors that one can infer from the
data and/or noise modelling, there are ‘systematic’ errors that
typically plague interferometric data and impact all the data of a
given set of observations in a similar and poorly understood way.
Parts of the biases are removed either theoretically (e.g. group-delay
dispersion; see Zyvagin, Smith & Sampson 2003) or calibrated out
(e.g. polarization; Haguenauer et al. 2000) by the measurement of
the ‘instrumental visibility’ on stars of known geometry, ideally
unresolved ones, with the underlying assumption that it varies
slowly enough to be interpolated to science observations with
sufficient precision (Hanbury Brown, Davis & Allen 1974; Perrin
2003).

However, complete removal does not happen. Colavita et al.
(2003) measured ≈5 per cent systematic errors on the calibrated

1MID-infrared Interferometric instrument.
2Astronomical Multi-BEam combineR.
3Precision Integrated-Optics Near-infrared Imaging ExpeRiment.
4Fiber Linked Unit for Optical Recombination.
5Infrared and Optical Telescope Array.
6Center for High Angular Resolution Array.

squared visibility amplitudes at the Keck Interferometer by ob-
serving binaries of known orbital parameters. More recently, high-
precision diameter measurements using sufficiently well-resolved
stars with CHARA (Karovicova et al. 2018; White et al. 2018)
were shown to significantly differ (several σ and up to 15 per cent)
from values previously obtained from underresolved interferometric
observations, leading the authors to conclude that they were plagued
with undiagnosed systematics. At VLTI, Le Bouquin et al. (2009)
and Kervella et al. (2004a) also tried to identify the origins of the
large systematics, discarding the uncertainty on central wavelength
(calibration errors are reported to be 0.35–0.50 per cent at PIONIER
at VLTI and PAVO7 at CHARA, respectively, by Huber et al. 2012;
Gallenne et al. 2018), atmospheric jitter and injection efficiency
due to seeing, and instrumental variations during the observation
(κ matrix). Possible sources are a differential polarization effect
(several per cents; Le Bouquin et al. 2012) and the way the bias
is removed in Fourier space during the PIONIER data processing
(see Le Bouquin et al. 2009, in the case of FINITO8). We also
stress that calibrators may be an additional source of systematics:
for instance, an unsuspected binary with a flux ratio of 1:100 would
likely go undetected in closure phase with PIONIER (� 2.3 deg),
yet could account for a bias in the squared visibility amplitudes of
up to 2 per cent.

While some authors deal with the uncertainty on the calibrators’
diameters as a systematic error (e.g. Creevey et al. 2015; Perraut
et al. 2016, but we include them in the correlated ‘statistical’ errors
for practical reasons), few take into account other systematics,
despite all the evidence. Huber et al. (2012) introduce systematic
errors of the order of 1 per cent in order to account for errors in
the spectral calibration, but they are still much smaller than the
observed and unexplained errors.

In this paper, we present a model that makes use of a technique
that is relatively easy to implement into existing pipelines, is
more accurate than the classical error propagation, and requires
no additional analytic developments. Known as the bootstrap
method (Efron & Tibshirani 1993), it consists in randomly selecting
interferograms to feed the data reduction software. Repeating it
enough times, we generate a sampling of the multivariate probability
density function of the square visibility amplitudes and closure
phases. Bootstrapping was originally introduced in interferometry
by Kervella, Ségransan & Coudé du Foresto (2004b) in order to
determine the statistical errors for VINCI9 at the VLTI. In addition,
we treat the systematic errors as an additional correlated term whose
magnitude is left as a free parameter.

In Section 2, we present the data set, acquired for the companion
paper by Rabus et al. (2019), which has led us to undertake this
work. Section 3 details our modelling of the correlated statistical
errors and systematic errors. We then show (Section 4) how the
estimated uniform disc diameters with PIONIER at the VLTI are
significantly impacted by the level of detail in the error modelling.
We summarize and conclude in Section 5.

2 DATA SET

In a companion paper by Rabus et al. (2019), we have needed to
obtain accurate stellar diameters of marginally resolved M dwarfs
in order to calibrate the mass–radius relation down to the fully

7Precision Astronomical Visible Observations.
8Fringe-tracking Instrument of NIce and TOrino.
9VLT Interferometer commissioning instrument.
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convective regime. While this paper focuses on the data processing
method that leads to reliable uncertainties, we find useful to show
our main findings on actual data. Our sample consists of 20
underresolved late-type stars of the solar neighbourhood, 13 M
dwarfs of the original programme by Rabus et al. plus 7 backup
targets acquired during the observing campaign.

Table 1 summarizes the science and calibrator observations that
we have carried out. The observation strategy was to observe each
science target with different calibrators and on different nights.
Each science observation was bracketed by calibrator observations
close in time (≈10 min) and altitude + azimuth (alt + az) positions
(a few degrees when possible). Calibrators were chosen so that as
to minimize uncertainties on the calibration of the transfer function,
i.e. either unresolved or resolved with a small diameter uncertainty.
We performed the selection with the searchCal tool (Chelli
et al. 2016) provided by the Jean-Marie Mariotti Center (JMMC).
All calibrators have indirect (i.e. non-interferometric) diameter
determinations, so they are immune to the biases investigated
in this paper. We used the Calibrator stars for 200 m baseline
interferometry by Mérand, Bordé & Coudé du Foresto (2005,
hereafter MER05, using the method: absolute spectro-photometric
calibration) for 15 large (∼1 mas) K0III-K5III calibrators with a
typical precision of the order of 1–2 per cent on diameter and �
1 per cent in visibility calibration, the Catalogue of Calibrator Stars
for LBSI by Bordé et al. (2002, using the same method) for one
K1III star with a similar level of precision, and the JMMC Stellar
Diameters Catalogue (JSDC; Bourges et al. 2017, using the method:
photometric calibration) for 65 smaller (� 0.5 mas) calibrators with
a typical precision of 10–20 per cent in diameter and � 2 per cent
in visibility. Swihart et al. (2017) have showed that the indirect
spectro-photometric calibration method for large calibrators is not
biased, as their catalogue is consistent both with interferometric
measurements and catalogue by MER05. For most of our science
stars (15 of 20), we observed small calibrators from JSDC or ones
smaller than the target from MER05. For four of our science targets
(GJ 1, GJ 54.1, GJ 86, GJ 370), we used one or more calibrators
from MER05 that are more resolved than the target, but we also
included several smaller ones from JSDC to mitigate the possible
impact of a large, unexpected error in a calibrator’s diameter: GJ 1
and GJ 54.1, main targets of Rabus et al. (2019), have been observed
together with eight and nine different JSDC calibrators, respectively,
in addition to the three and one from MER05. While the bracketing
calibrators have the largest impact on the calibration of a given
science observation, other calibrators taken for other targets on the
same night and with the same instrumental set-up contribute to some
extent to the transfer function, typically if they were taken within
an hour of the science target and relatively close in the sky. For any
given target and observing night, Table 1 lists all relevant calibrators
with their relative weight (see equation 3b in Section 3.1.2 for the
weighing as a function of distance in time and position) as well as
sky conditions.

Table 2 gives an overview of the instrumental set-ups used and
the fine tuning of calibration parameters.

3 DATA PRO CESSING

We call ‘data set’, with index d (d in 1. . . Ndata), a set of Nint ∼
102 interferograms Idi , indexed by i (1. . . Nint), taken in quick
succession with a single telescope pair in a single spectral channel.
An interferogram is the temporal scan as a function of optical path
difference (OPD). Each data set of a science target will result in
exactly one calibrated squared visibility amplitude V 2

d , which we

will refer to as ‘visibility’. The interferograms of a data set are
assumed to share the projected baseline length ud = Bd · r̂d/λd ,
where λd is the effective wavelength of the spectral channel, Bd is
the mean separation between the telescopes, and r̂d the radial unit
vector representing the target’s location in the horizontal coordinate
system (elevation and azimuth).

An ‘observation’ consists of several data sets taken at the same
time, with different values of ud, for several baselines are used at
the same time, sometimes also different wavelengths. In the present
case, we have used PIONIER with 6 telescope pairs and one to
3 spectral channels, so each observation consists of 6 or 18 data
sets. In a single telescope pointing, five observations are usually
performed in a row (for a total of 5–10 min). Over the observing
runs, we have acquired data for a few dozens of pointing positions
per scientific target, collecting of the order of 1000 data sets per
star.

A ‘set-up’ is a unique combination of configuration of the tele-
scope array (stations used), instrumental set-up (spectral dispersion,
readout mode, scanning speed), and observing night. Because of
the span in stellar brightness among the sources and the varying
observing conditions, a few set-ups are used each night. In a set-
up, several calibrator stars and one or more scientific targets are
observed. All data taken with the same set-up can show some level
of correlated systematics due to the wavelength calibration error.

We shall call ‘baseline’ a unique combination of a telescope pair
and a set-up. In particular, we will consider that data sets taken
with the same stations with different spectral configurations or on
different nights originate from different baselines as they are likely
to have different systematic error terms.

The PIONIER data reduction software (hereafter pndrs, see
section 5 of Le Bouquin et al. 2011), which we have modified,
determines uncalibrated visibilities, computes the instrumental
transfer function for calibrators of known diameters, interpolates
it for scientific targets taken with the same set-up, and derives the
calibrated visibilities for these sources.

Our treatment of uncertainties proceeds in four steps: we de-
termine the ‘statistical’ errors that can be inferred from the noise
in the data and the uncertainty on the diameters of the calibrators
(Section 3.1), we model an additional error term to account for the
dispersion of the reduced visibilities at each baseline (Section 3.2),
introduce a highly correlated, systematic error term to account
for the discrepancy between the reduced visibilities of different
baselines (Section 3.3), and model the wavelength calibration error
as an additional systematic error term (Section 3.4). Section 3.5
gives the resulting covariance matrix.

3.1 ‘Statistical’ errors

3.1.1 Raw visibilities

The ‘raw’ visibility (uncalibrated visibility) is determined by
correcting the fringe contrast of the interferograms from different
atmospheric and instrumental effects such as the finite bandwidth
and the flux imbalance between the beams. For the sake of clarity,
we will assume that it is obtained separately on each interferogram
and then averaged. However, the details of how pndrs computes
visibility amplitudes may vary according to set-up and processing
mode (see section 5 of Le Bouquin et al. 2011, for further details of
the data processing). The bootstrap method will work as long as the
resulting visibility is a function of a significant number of scans or
frames. For instance, it fails for the science detector of GRAVITY
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Reliable uncertainties in IR interferometry 2659

Table 1. Observing log sorted by science target, calibrator, and observing night. Calibrator characteristics are H magnitude, spectral type, uniform disc
diameter ϑcal, and relative weight in the transfer function calculation, with 1.0 for calibrators very close in time and space (e.g. SCI-CAL-SCI block). This
weight does not include the lesser impact of large diameter, large diameter uncertainties, and large visibility dispersion under bad conditions that arises from
error propagation. Sky conditions in the direction of the target in H band are the seeing and the atmospheric phase coherence time τ 0. Science and calibrators
observed close to, or above, the nominal limiting magnitude of the instrument are listed as ≈ lim and > lim. We have fitted Hlim = 6.7–2.5log10 (seeing in V)
to the conservative estimates from the ESO Call for Proposals, albeit it is better when τ 0 is large (e.g. GJ 1061).

Science target Calibrator Night Conditions
Name H Name H Sp. type ϑcal Weight Night Seeing τ 0 Ins. limit

(mag) (mag) (mas) (MJD) (arcsec) (ms) sci. cal.

GJ 1 4.73 HD 1434 3.75 K2III 0.941 ± 0.013 0.96 56596 0.68 ± 0.04 6.8 ± 0.4 – –
– – – – – – 0.86 56849 1.36 ± 0.17 3.3 ± 0.4 – –
– – – – – – 0.92 56850 – 17.8 ± 0.0 – –
– – HD 190 5.38 G8III 0.431 ± 0.085 0.64 56849 1.13 ± 0.08 3.8 ± 0.3 – –
– – – – – – 0.76 56850 – 17.8 ± 0.0 – –
– – – – – – 0.98 56889 0.75 ± 0.13 22.4 ± 3.1 – –
– – HD 214623 4.05 K2/3III 0.776 ± 0.011 0.22 56597 0.92 ± 0.05 5.8 ± 0.4 – –
– – HD 215709 5.61 F6V 0.313 ± 0.062 0.28 56889 0.57 ± 0.05 28.3 ± 2.6 – –
– – HD 216988 5.17 K0III 0.468 ± 0.093 0.22 56597 0.93 ± 0.04 5.4 ± 0.2 – –
– – HD 217681 5.64 K0III 0.362 ± 0.072 0.62 56889 0.58 ± 0.05 28.7 ± 2.2 – –
– – HD 224936 4.66 K1III 0.635 ± 0.126 0.53 56596 0.68 ± 0.10 6.6 ± 0.9 – –
– – – – – – 0.95 56890 0.81 ± 0.12 14.7 ± 1.9 – –
– – HD 224949 4.92 K0III 0.556 ± 0.110 0.93 56596 0.75 ± 0.05 6.0 ± 0.4 – –
– – – – – – 0.90 56597 0.91 ± 0.05 5.6 ± 0.3 – –
– – – – – – 0.84 56849 1.15 ± 0.07 3.7 ± 0.2 – –
– – – – – – 0.84 56850 – 17.9 ± 0.1 – –
– – – – – – 0.97 56889 0.85 ± 0.17 20.9 ± 3.5 – –
– – HD 225101 6.23 F2V 0.234 ± 0.047 0.95 56597 0.95 ± 0.05 5.4 ± 0.3 – –
– – HD 32 4.80 G8III/IV 0.538 ± 0.107 0.91 56596 0.80 ± 0.13 5.8 ± 0.9 – –
– – – – – – 0.90 56597 0.86 ± 0.07 5.9 ± 0.4 – –
– – – – – – 0.89 56890 0.95 ± 0.17 12.9 ± 2.0 – –
– – HD 902 3.77 K3/4III 0.967 ± 0.013 0.78 56596 0.62 ± 0.05 7.4 ± 0.6 – –
– – – – – – 0.93 56849 1.51 ± 0.09 3.1 ± 0.1 – –
– – – – – – 0.88 56850 – 17.9 ± 0.0 – –
GJ 54.1 6.75 HD 22000 7.13 G8III 0.187 ± 0.037 0.54 56889 0.97 ± 0.22 21.3 ± 3.8 ≈ lim > lim
– – HD 5248 7.28 K0V 0.163 ± 0.032 0.92 56889 0.84 ± 0.05 20.2 ± 1.3 ≈ lim > lim
– – HD 5911 6.51 G3V 0.216 ± 0.043 0.89 56597 1.03 ± 0.17 5.8 ± 0.7 > lim ≈ lim
– – HD 5932 6.99 F0V 0.156 ± 0.031 0.92 56890 0.82 ± 0.20 13.6 ± 2.8 ≈ lim ≈ lim
– – HD 6022 7.15 F2V 0.154 ± 0.031 0.94 56889 0.87 ± 0.03 20.2 ± 1.1 ≈ lim > lim
– – HD 6482 3.81 K0III 0.836 ± 0.012 0.84 56596 0.92 ± 0.08 6.3 ± 1.0 ≈ lim –
– – HD 6720 6.11 G8V 0.288 ± 0.057 0.84 56542 – 5.9 ± 0.1 ≈ lim –
– – – – – – 0.96 56596 0.98 ± 0.12 4.9 ± 0.6 ≈ lim –
– – HD 7257 6.58 F3V 0.210 ± 0.042 0.84 56542 – 6.3 ± 0.3 ≈ lim ≈ lim
– – – – – – 0.86 56597 0.86 ± 0.14 6.1 ± 0.8 ≈ lim –
– – HD 7495 6.26 F6V 0.235 ± 0.047 0.97 56596 0.71 ± 0.06 7.4 ± 0.5 – –
– – – – – – 0.76 56597 0.90 ± 0.05 5.4 ± 0.3 ≈ lim –
– – HD 8406 6.50 G3V 0.232 ± 0.046 0.73 56596 0.63 ± 0.04 6.9 ± 0.4 – –
– – – – – – 0.91 56597 0.97 ± 0.05 6.6 ± 0.8 ≈ lim ≈ lim

GJ 86 4.25 HD 10939 5.03 A1V 0.329 ± 0.066 0.98 56253 0.63 ± 0.03 10.6 ± 0.4 – –
– – HD 12619 3.52 K5III 1.139 ± 0.016 0.85 56210 0.68 ± 0.14 7.9 ± 1.4 – –
– – – – – – 0.98 56252 0.84 ± 0.22 6.8 ± 1.8 – –
– – HD 13666 3.21 K2/3III 1.007 ± 0.014 0.95 56252 0.84 ± 0.23 6.5 ± 1.9 – –
– – HD 15371 4.66 B7IV 0.402 ± 0.080 0.98 56253 0.70 ± 0.05 8.9 ± 0.6 – –
– – HD 15520 4.61 K1III 0.624 ± 0.124 0.85 56210 0.74 ± 0.12 7.4 ± 1.3 – –
– – HD 20640 3.09 K2III 1.260 ± 0.016 0.92 56252 0.92 ± 0.10 5.9 ± 0.6 – –
– – HD 21011 3.93 K0III 0.688 ± 0.009 0.52 56253 0.88 ± 0.21 7.3 ± 1.8 – –
– – HD 25038 4.29 K2III 0.812 ± 0.011 0.27 56253 0.61 ± 0.04 9.3 ± 0.6 – –
– – HD 26934 3.60 K3III 0.984 ± 0.013 0.66 56253 0.74 ± 0.12 8.0 ± 1.2 – –
– – HD 22663 2.14 K1III 1.890 ± 0.022 0.68 56252 1.45 ± 0.44 3.8 ± 1.1 – –
– – HD 28776 3.63 K0II 0.837 ± 0.166 0.90 56253 0.57 ± 0.10 10.9 ± 1.7 – –
GJ 229 4.39 HD 38090 5.54 A2/3V 0.272 ± 0.054 0.98 56325 1.32 ± 0.27 5.2 ± 0.9 – –
– – HD 40379 5.49 F6V 0.330 ± 0.066 0.74 56325 1.21 ± 0.17 4.4 ± 0.5 – –
– – HD 43445 5.12 B9V 0.275 ± 0.055 0.76 56253 0.50 ± 0.03 10.9 ± 0.7 – –
– – – – – – 0.88 56325 1.29 ± 0.25 5.3 ± 1.3 – –
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Table 1 – continued

Science target Calibrator Night Conditions
Name H Name H Sp. type ϑcal Weight Night Seeing τ 0 Ins. limit

(mag) (mag) (mas) (MJD) (arcsec) (ms) sci. cal.

– – HD 44893 4.22 K2/3III 0.800 ± 0.010 0.74 56253 0.53 ± 0.10 10.4 ± 2.2 – –
– – HD 48286 5.58 F9V 0.329 ± 0.066 0.97 56325 1.46 ± 0.17 4.0 ± 0.2 – ≈ lim
– – HD 58187 5.18 A5IV 0.356 ± 0.071 0.74 56325 2.02 ± 0.10 3.8 ± 0.2 – ≈ lim
– – HD 60111 4.97 F0/2IV/V 0.407 ± 0.081 0.36 56325 1.47 ± 0.13 4.4 ± 0.4 – –

GJ 273 5.22 HD 48286 5.58 F9V 0.329 ± 0.066 0.37 56325 1.61 ± 0.10 4.0 ± 0.2 – ≈ lim
– – HD 58187 5.18 A5IV 0.356 ± 0.071 0.96 56325 2.02 ± 0.10 3.8 ± 0.2 > lim ≈ lim
– – – – – – 0.88 56384 0.73 ± 0.06 8.4 ± 0.6 – –
– – – – – – 0.94 56737 1.34 ± 0.08 6.9 ± 0.4 – –
– – – – – – 0.93 56740 0.66 ± 0.03 11.0 ± 0.6 – –
– – HD 58556 5.73 G1V 0.305 ± 0.061 0.98 56325 1.24 ± 0.09 6.6 ± 0.6 – –
– – – – – – 0.72 56384 0.73 ± 0.12 7.2 ± 0.8 – –
– – – – – – 0.86 56737 0.93 ± 0.15 8.3 ± 2.4 – –
– – – – – – 0.84 56740 0.64 ± 0.05 8.8 ± 0.7 – –
– – HD 60111 4.97 F0/2IV/V 0.407 ± 0.081 0.98 56325 1.47 ± 0.13 4.4 ± 0.4 – –
– – – – – – 0.92 56737 1.24 ± 0.11 6.0 ± 0.6 – –
– – – – – – 0.91 56740 0.62 ± 0.05 9.7 ± 0.7 – –
– – HD 60275 6.19 A0V 0.182 ± 0.036 0.87 56737 1.18 ± 0.05 8.1 ± 0.4 – ≈ lim
– – HD 64685 5.01 F3V 0.391 ± 0.078 0.96 56325 1.46 ± 0.10 5.8 ± 0.7 – –

GJ 370 5.00 HD 85483 3.53 K0III 0.974 ± 0.013 0.81 56737 1.21 ± 0.15 5.7 ± 0.7 – –
– – – – – – 0.87 56738 0.91 ± 0.08 7.3 ± 0.5 – –
– – – – – – 0.91 56739 1.00 ± 0.09 5.5 ± 0.6 – –
– – HD 85849 5.95 K1III 0.318 ± 0.063 0.88 56738 0.89 ± 0.08 6.6 ± 0.8 – –
– – – – – – 0.93 56739 1.06 ± 0.09 4.9 ± 0.4 – –
– – – – – – 0.90 56740 0.55 ± 0.03 10.4 ± 0.6 – –
– – HD 85996 5.71 K0III 0.367 ± 0.073 0.96 56738 1.08 ± 0.10 5.1 ± 0.5 – –
– – – – – – 0.84 56739 0.83 ± 0.13 6.4 ± 0.9 – –
– – – – – – 0.75 56740 0.49 ± 0.03 11.5 ± 0.7 – –
GJ 406 6.48 HD 93081 6.02 F6V 0.275 ± 0.055 0.68 56737 1.09 ± 0.26 6.7 ± 1.4 ≈ lim –

– – – – – – 0.80 56738 1.02 ± 0.18 5.8 ± 0.9 ≈ lim –
– – – – – – 0.88 56739 0.70 ± 0.06 8.3 ± 0.5 – –
– – – – – – 0.91 56740 0.50 ± 0.03 12.6 ± 0.8 – –
– – HD 95216 5.45 F5V 0.337 ± 0.067 0.54 56738 0.75 ± 0.05 9.3 ± 0.6 – –
– – – – – – 0.90 56740 0.70 ± 0.13 10.9 ± 1.8 – –

GJ 433 5.86 HD 103868 5.96 F3V 0.253 ± 0.050 0.99 56326 1.39 ± 0.02 9.7 ± 1.2 ≈ lim ≈ lim
– – HD 96557 5.72 F2V 0.276 ± 0.055 0.98 56326 1.51 ± 0.19 7.7 ± 1.1 > lim ≈ lim
– – – – – – 0.58 56384 0.59 ± 0.11 7.6 ± 1.4 – –
– – HD 98220 5.64 F7V 0.319 ± 0.063 0.97 56326 1.56 ± 0.20 6.9 ± 0.8 > lim ≈ lim
– – – – – – 0.83 56384 0.58 ± 0.05 7.7 ± 0.6 – –

GJ 447 5.95 HD 101730 5.88 F5V 0.294 ± 0.059 0.99 56325 0.83 ± 0.04 9.7 ± 0.9 – –
– – – – – – 0.64 56384 0.61 ± 0.06 8.4 ± 0.6 – –
– – HD 103773 5.68 F7V 0.306 ± 0.061 0.98 56325 0.82 ± 0.06 8.6 ± 0.6 – –
–– – – – – – 0.87 56384 0.56 ± 0.05 8.4 ± 1.0 – –
– – HD 97937 5.96 F0V 0.251 ± 0.050 0.98 56325 1.02 ± 0.08 8.0 ± 0.8 – –

GJ 551 4.84 HD 119073 5.48 K0III 0.398 ± 0.079 0.63 56737 0.80 ± 0.06 8.6 ± 0.6 – –
– – HD 128398 5.38 F7IV 0.342 ± 0.068 0.85 56849 1.00 ± 0.05 4.9 ± 0.3 – –
– – – – – – 0.86 56850 0.53 ± 0.04 19.2 ± 1.5 – –
– – HD 128917 5.16 F5V 0.378 ± 0.075 0.89 56849 0.90 ± 0.12 5.5 ± 0.6 – –
– – HD 133869 3.72 K3III 1.043 ± 0.015 0.78 56849 0.81 ± 0.05 6.8 ± 0.5 – –
– – – – – – 0.81 56850 – 3.7 ± 0.0 – –
GJ 581 6.09 HD 136713 5.83 K2V 0.332 ± 0.066 0.75 56849 0.91 ± 0.17 5.2 ± 1.4 – –
– – – – – – 0.81 56850 0.48 ± 0.03 18.4 ± 1.1 – –
GJ 628 5.37 HD 148427 4.88 K0III/IV 0.546 ± 0.108 0.90 56890 1.24 ± 0.11 11.8 ± 1.4 – –
– – HD 148967 6.16 F2/3V 0.256 ± 0.051 0.90 56890 1.32 ± 0.14 11.1 ± 1.4 – > lim
– – HD 149287 5.82 K0V 0.319 ± 0.063 0.97 56889 0.81 ± 0.06 15.2 ± 1.2 – –
GJ 667C 6.32 HD 148729 6.22 G0V 0.246 ± 0.049 0.80 56889 0.74 ± 0.06 34.3 ± 3.9 – –
– – HD 155259 5.57 A0/1V 0.242 ± 0.048 0.74 56849 0.86 ± 0.10 5.3 ± 0.8 – –
– – – – – – 0.76 56850 – 19.9 ± 1.3 – –
– – HD 157338 5.58 F9.5V 0.331 ± 0.066 0.95 56849 0.95 ± 0.08 4.3 ± 0.4 – –
– – – – – – 0.96 56850 – 19.2 ± 0.7 – –
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Table 1 – continued

Science target Calibrator Night Conditions
Name H Name H Sp. type ϑcal Weight Night Seeing τ 0 Ins. limit

(mag) (mag) (mas) (MJD) (arcsec) (ms) sci. cal.

– – HD 175501 6.54 F3IV/V 0.192 ± 0.038 0.34 56889 0.92 ± 0.04 21.5 ± 2.1 – ≈ lim

GJ 674 5.15 HD 157555 5.91 F6/7V 0.270 ± 0.054 0.94 56890 1.30 ± 0.11 12.2 ± 1.3 – ≈ lim
– – HD 159285 5.44 K1III 0.430 ± 0.085 0.97 56890 1.54 ± 0.26 11.0 ± 1.5 – ≈ lim
GJ 729 5.66 HD 148729 6.22 G0V 0.246 ± 0.049 0.27 56889 0.74 ± 0.06 34.3 ± 3.9 – –
– – HD 174309 5.34 F2IV 0.350 ± 0.070 0.92 56890 1.11 ± 0.13 13.7 ± 2.3 – –
– – HD 175501 6.54 F3IV/V 0.192 ± 0.038 0.97 56889 0.84 ± 0.09 24.5 ± 3.5 – –
– – HD 179024 6.23 G5III 0.268 ± 0.053 0.97 56889 0.74 ± 0.08 28.5 ± 3.1 – –
GJ 785 3.58 HD 196387 3.52 K4III 1.085 ± 0.015 0.56 56210 0.80 ± 0.07 6.2 ± 0.7 – –
GJ 832 4.77 HD 202704 5.75 G8III/IV 0.349 ± 0.069 0.96 56596 0.64 ± 0.05 8.3 ± 0.7 – –
– – HD 205048 4.66 K1III 0.636 ± 0.126 0.86 56210 0.76 ± 0.09 7.0 ± 1.2 – –
– – HD 207400 4.32 K0III 0.651 ± 0.129 0.86 56210 0.77 ± 0.06 6.6 ± 0.5 – –
– – HD 219531 4.29 K0III 0.694 ± 0.138 0.39 56210 0.57 ± 0.03 8.7 ± 0.4 – –
– – HD 221507 4.67 B9.5III 0.354 ± 0.070 0.61 56210 0.56 ± 0.02 8.5 ± 0.2 – –
GJ 876 5.35 HD 190 5.38 G8III 0.431 ± 0.085 0.60 56889 0.75 ± 0.13 22.4 ± 3.1 – –
– – HD 212587 5.85 G8/K0III 0.324 ± 0.064 0.72 56542 0.87 ± 0.05 7.7 ± 0.7 – –
– – HD 215097 4.93 K0III 0.514 ± 0.102 0.84 56210 0.64 ± 0.06 7.5 ± 0.8 – –
– – HD 215709 5.61 F6V 0.313 ± 0.062 0.76 56542 1.05 ± 0.12 6.2 ± 0.7 – –
– – – – – – 0.93 56889 0.65 ± 0.10 25.2 ± 3.9 – –
– – HD 215874 5.54 F0V 0.300 ± 0.060 0.98 56253 0.61 ± 0.04 12.4 ± 0.9 – –
– – HD 216357 5.90 F6V 0.281 ± 0.056 0.61 56542 – 5.3 ± 0.0 – –
– – HD 216402 5.62 F8V 0.338 ± 0.067 0.86 56890 0.83 ± 0.12 15.8 ± 2.3 – –
– – HD 217681 5.64 K0III 0.362 ± 0.072 0.97 56889 0.58 ± 0.05 28.7 ± 2.2 – –
– – – – – – 0.87 56890 0.91 ± 0.13 13.5 ± 2.4 – –
– – HD 218071 4.94 K0III 0.570 ± 0.113 0.81 56210 0.60 ± 0.04 7.8 ± 0.7 – –
– – HD 224949 4.92 K0III 0.556 ± 0.110 0.29 56889 0.72 ± 0.05 23.6 ± 1.6 – –
GJ 887 3.61 HD 190 5.38 G8III 0.431 ± 0.085 0.25 56850 – 17.8 ± 0.0 – –
– – HD 214623 4.05 K2/3III 0.776 ± 0.011 0.78 56597 1.21 ± 0.27 4.4 ± 1.1 – –
– – – – – – 0.63 56849 1.17 ± 0.28 3.7 ± 0.9 – –
– – – – – – 0.80 56850 – 18.1 ± 0.3 – –
– – – – – – 0.98 56889 0.69 ± 0.07 25.9 ± 3.1 – –
– – HD 215616 4.78 G8/K0III 0.566 ± 0.112 0.97 56889 0.75 ± 0.04 22.8 ± 0.9 – –
– – – – – – 0.88 56890 0.76 ± 0.11 17.1 ± 2.6 – –
– – HD 215678 5.00 K0III 0.549 ± 0.109 0.85 56597 1.15 ± 0.28 4.4 ± 0.9 – –
– – – – – – 0.74 56849 1.33 ± 0.30 3.2 ± 0.7 – –
– – – – – – 0.89 56850 – 17.9 ± 0.2 – –

– – – – – – 0.90 56890 0.85 ± 0.12 15.6 ± 2.2 – –
– – HD 216988 5.17 K0III 0.468 ± 0.093 0.91 56597 1.00 ± 0.11 5.0 ± 0.5 – –
– – HD 221750 4.81 K1III 0.574 ± 0.114 0.98 56889 0.65 ± 0.04 26.3 ± 1.5 – –
– – HD 224949 4.92 K0III 0.556 ± 0.110 0.26 56597 0.91 ± 0.05 5.6 ± 0.3 – –
– – – – – – 0.35 56850 – 17.9 ± 0.1 – –
GJ 1061 7.01 HD 22000 7.13 G8III 0.187 ± 0.037 0.93 56889 0.99 ± 0.20 20.7 ± 3.7 > lim > lim
– – – – – – 0.88 56890 0.70 ± 0.13 14.5 ± 2.2 – ≈ lim
– – HD 22865 6.78 F7V 0.188 ± 0.037 0.90 56890 0.88 ± 0.07 12.8 ± 1.1 > lim ≈ lim
– – HD 6022 7.15 F2V 0.154 ± 0.031 0.52 56889 0.89 ± 0.02 19.9 ± 1.0 > lim > lim

with long exposures (ESO GRAVITY pipeline team 2018), but it
should work for all other VLTI instruments.

Uncertainties are determined by the bootstrap method. The
bootstraps Bdib (b in 1. . . Nboot) are Nboot sets of Nint interferograms
picked at random with repeats from the original set Idi . With the
exception that the first bootstrap is the original set, i.e. Bdi1 = Idi ,
we pick Nint(Nboot − 1) independent random numbers rib uniformly
in 1. . . Nint, so that Bdib = Idrib for i ≥ 2. The random numbers rib

are the same for all data sets of the same observation, so that cross-
channel and cross-baseline correlations are correctly measured.

We then obtain Nboot raw visibilities V 2 raw
db (1 ≤ b ≤ Nboot) by

averaging the visibility V2(Bdib) obtained for each interferogram.

Together with its uncertainty, it is given by

V 2 raw
db = 〈

V2(Bdib)
〉

i
(1a)

�V 2 raw
d = 1

Nboot

√∑
b

(
V 2 raw

db − 〈
V 2 raw

db′
〉

b′
)2

. (1b)

In this work, we picked Nboot = 5 × 103 so that we can derive
a covariance matrix for a few thousands of data sets and use the
(very slightly biased) sample variance to avoid numerical issues.
The original version of pndrs published by Le Bouquin et al.
(2011) also bootstraps the interferograms (with Nboot ∼ 102) to
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2662 R. Lachaume et al.

Table 2. Tuning of the parameters in the interpolation of the transfer
function for all set-ups (Section 3.1.2, equations 3a and 3b). MJD: Modified
Julian Day; #: the number of spectral set-ups; DIT: total integration time
during a scan; Nfowler: the number of Fowler (i.e. non-destructive) reads of
the infrared detector per scan position; Nopd: the number of scan positions;
τ t: the time-scale to determine the weight of calibrators taken close in time;
τα : the alt+az angular distance scale to determine the weight of calibrators
close by in the sky; ε: the minimum relative error in the calibrator visibility
considered when determining the weight of a calibrator. The first set-up is a
good example of an unstable night when only calibrators very close in time
to the science observation (� 20 min and 15 deg) have a significant weight.
Many nights are stable enough and free of alt + az polarization effects (e.g.
MJD 56384–56850).

MJD # DIT Nfowler×Nopd τ t τα ε

56000 + (s) (h) (deg)
(per
cent)

210 1 0.39 4 × 512 0.3 15 2
– 1 0.60 1 × 1024 0.8 20 1
252 4 all all 0.8 +∞ 1
253 1 0.23 1 × 512 0.8 20 1
325–326 5 all all 0.8 +∞ 1
384–850 21 all all 0.8 20 1
889 3 all all 0.8 +∞ 1
890 3 all all 0.8 20 1

determine the uncertainty, but discards them afterwards. It keeps
the value V 2 raw

d1 ± �V 2 raw
d of equation (1) and propagates the errors

assuming an uncorrelated multivariate Gaussian distribution. We
have modified the software to keep all the bootstraps down to
the final product and get an empirical sampling of the calibrated
visibility distribution.

3.1.2 Instrumental transfer function

There are still instrumental effects, difficult to compute, in the raw
visibilities, so that the fringe contrast is lower than expected from
a theoretical point of view. To remove them, the transfer function
(also known as instrumental visibility) is calculated on unresolved
sources or targets of precisely known geometry, observed in the
vicinity of the scientific targets. Then it is interpolated for science
targets. Some care has to be taken to include the uncertainties on the
calibrators’ diameters and variations of the transfer function due to
changing atmospheric conditions.

If the star is a calibrator with a known uniform disc diameter ϑ

± �ϑ , then Nboot diameters ϑb are picked at random assuming a
Gaussian distribution N(ϑ,�ϑ2), with the exception that ϑ1 = ϑ .
This is done once per calibrator star for all the observing runs, so
that correlations from calibrator errors are correctly propagated to
the final data.

For data set c corresponding to a calibrator and bootstrap number
b, the ratio of the raw visibility V 2 raw

cb to the theoretical uniform disc
visibility V 2 ud

cb yields the transfer function Tcb:

V 2 ud
cb = V2

disc (πucϑb) (2a)

�V 2 ud
c = dV2

disc
dx

(πucϑ)πuc�ϑ (2b)

Tcb = V 2 raw
cb

V 2 ud
cb

(2c)

�Tc = Tc1

√(
�V 2 raw

c

V 2 raw
c

)2
+

(
�V 2 ud

c

V 2 ud
c1

)2
, (2d)

where the theoretical visibility amplitude of a uniform disc is
given by the function V2

disc(x) = |2J1(x)/x|2 with J1 the Bessel
function of the first kind.

If the star is a scientific target, the reduction software interpolates
the transfer function using calibrator observations c1, . . . , cn

obtained on the baseline (same telescope pair and set-up). Calibrator
observations close in time and/or position in the sky and with smaller
error bars are given more weight. If, for bootstrap number b, the
transfer functions Tc1b, . . . , Tcnb are determined at time tc1 , . . . , tcn

and horizontal coordinates r̂c1 , . . . , r̂cn
, then the estimated transfer

function for a science observation d at time td and position r̂d is
given by

Tdb =
∑

k wkTckb∑
k wk

(3a)

wk = max
(
ε,

�Tckb

Tckb

)−2
e
− (tck −td )2

τ2
t e

− α(r̂ck ,r̂d )2

τ2
α , (3b)

where α(r̂1, r̂2) is the alt + az difference between telescope
pointing positions r̂1 and r̂2. τ t, τα , and ε are constants within
a given set-up. τ t is the time-scale of variations of the transfer
function, typically of the order of 1 h in the original pndrs
software, but we have shortened it for a few very ‘agitated’ nights
(see Table 2). τα is the angular size on the sky over which the
transfer function varies. In the original software, τα = +∞ so that
calibrators have a weight independent of their position relative to the
science target. However, in some nights, polarization effects led us
to use a finite value (see Table 2). ε = 0.01 (also used in the original
pndrs) is the minimum relative uncertainty we consider in the
determination of the weight of calibrator observations, in order to
avoid that a calibrator with an unexpectedly low uncertainty biases
the transfer function.

The calculation of �Td includes the following three terms:

(i) the error propagation using equation (3a), which includes the
uncertainty on the diameter of the calibrators;

(ii) an interpolation uncertainty taking into account the varying
atmospheric conditions between target and calibrator, which we
measure by comparing the interpolated transfer function for cali-
brator observations with the measured one;

(iii) an extrapolation uncertainty for data not bracketed by cali-
brators (which we have avoided).

An example for the first two uncertainty terms of the transfer
function is given in section 3 of Nuñez et al. (2017) in the case of
weights linear in time. The full expression for �Td is not given here
for it follows exactly the same steps as in the original software.

3.1.3 Calibrated visibilities

The calibrated visibilities V 2
db, their uncertainties �V 2

d , and their
covariances �dd ′ are given by

V 2
db = V 2 raw

db

Tdb
, (4a)

�V 2
d = V 2

d1

√(
�V 2 raw

d

V 2 raw
d

)2
+

(
�Td

Td1

)2
, (4b)
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�dd ′ =
∑

b

(
V 2

db
−

〈
V 2

db′
〉

b′
)(

V 2
d′b−

〈
V 2

d′b′
〉

b′
)

Nboot
. (4c)

In some cases, the uncertainties on the calibrated visibility obtained
from the standard deviation of the calibrated bootstraps

�V 2
d

′ = √
�dd (4d)

differ to some extent from the ones derived by error propagation
(�V 2

d in equation 4b) in the original software. The reasons are
correlations, departure from the Gaussian distribution, and non-
linearity in the calculations in the reduction software (in particular
the divisions).

3.2 Baseline-dependent ‘statistical’ errors

We have noted that within a given baseline, it frequently happens
that the dispersion of the data points is higher than what our carefully
deduced uncertainties suggest. Because most of the stars in our
programme are bona fide centro-symmetric targets, underresolved
in the H band at VLTI, the uniform disc model (or any symmetric
model; see Lachaume 2003) should fit the data correctly. Thus, we
expect the reduced chi squared of a least-squares fit to the data of
a single baseline to be close to unity. While it is the case on some
baselines, it might be significantly higher (≈2) on others.

It is quite possible that the determination of the instrumental
transfer function in quickly changing conditions is not perfect. In
particular, the interpolation of the transfer function (equation 3a)
would fail if conditions changed abruptly. In general, our knowledge
on the variation of the transfer function is very limited, so we rely
on an imperfect, generic smoothing law (equation 3b).

We also considered that time-correlations may impact the boot-
strap method. In Section 3.1.1, the determination assumes that the
V2(Idi), for i in 1Nint, are not time-correlated. Unfortunately, the
data are too noisy to infer a meaningful autocorrelation function
and model its impact on the result. However, we know that the
observing cadence (∼1 s) is significantly slower than the typical
interferometric coherence time (∼100 ms in the IR; see Perrin 1997;
di Folco et al. 2003; Glindemann 2011) and atmospheric turbulence
time τ 0 (∼10 ms in the IR). So, we expect little correlation from
the differential atmospheric piston and fibre injection variations.
In the case unsuspected sources of temporal correlation did show
up, we would expect to underestimate uncertainties. However, we
have checked that, even with highly correlated visibilities, the
impact is very small: in the case of a correlation coefficient of
0.9 between consecutive interferograms, we simulated batches of
100 measurements, which yielded a bootstrap estimate of �V 2 raw

d

within 10 per cent of the correct value.
In the absence of a clear understanding of these errors, we

decide to model them as an uncorrelated additive term Ebl
d . It has

expectancy 0, standard deviation σ bl
b V 2

d , and correlations 0. For each
baseline where the reduced chi squared χ2

r differs significantly from
1,10 the value of σ bl

b is adjusted so that a least-squares fit to the data
of this baseline (and only these data) yields a reduced χ2

r = 1.

10χ2
r is expected to be 1.00 ± 0.22 with a 3σ confidence interval for an

observation with two telescope pointings and three spectral channels, but
we have found values of 2–4 on some baselines.

3.3 ‘Systematic’ errors

We have tried to avoid the commonest systematic error sources
with PIONIER. Any calibrator showing hints of binarity, thus being
able to skew the transfer function for baselines parallel to the
binary separation, was excluded. Calibrators were chosen close
(a few degrees when possible) to the science targets so that the
differential polarization effect is minimized. On nights where this
effect was impacting the data processing with the default pndrs
parameters, the instrumental transfer function was interpolated in a
way that calibrators distant in alt + az position are filtered out (see
Section 3.1.2 and Table 2).

In spite of these efforts, there is strong evidence of systematics
in our data. Visually (see Fig. 4, in particular GJ 86, GJ 1061,
GJ 1), the data of some baselines do not align with those at other
baselines. This first look is confirmed by a reduced χ2 > 1 on
most of our fits in spite of a detailed modelling of statistical errors
(Sections 3.1 and 3.2).

We model these systematic errors by a multiplicative term E
sys
d

with high correlations along the same baselines. It has expectancy
1, standard deviation σ sys, and correlation coefficients 
 ≈ 1 for
all observations d of the same baseline, and 0 for observations on
different baselines. The value of σ sys is adjusted so that a least-
squares fit to the full data set yields a reduced χ2 = 1.

3.4 Wavelength calibration errors

Gallenne et al. (2018) showed that the PIONIER wavelength
calibration has a relative uncertainty of ≈0.35 per cent by al-
ternating observations of a well-known binary with PIONIER
and wavelength-stabilized second-generation VLTI instrument
GRAVITY (Eisenhauer et al. 2011). The uncertainty on the central
wavelength of spectral channels of a given spectral configuration,
σ wl = �λ/λ, produces an uncertainty on the projected baseline ud

of the same amount (0.35 per cent). To model it exactly, we should
introduce correlated uncertainties along the x-axis (ud ± σ wlud) in
addition to those on the y-axis (V2 ± �V2). Since the model is a
continuously differentiable function of baseline, we decide instead
to translate this small error in baseline into a small error in visibility.
For underresolved objects, 1 − V 2

d ∝ u2
d so that we obtain:

�V 2 ≈ 2(1 − V 2)σ wl. (5)

We model this systematic error source as an additive term Ewl
d of

zero expectancy, standard deviation 2σ wl(1 − V 2
d ), and correlation

≈1 for all observations taken with the same spectral set-up on the
same night. Because Gallenne et al. (2018, see their fig. 1) show
that the wavelength error varies from one night to the other, we have
assumed that correlations are zero for data taken on different nights
and/or different spectral configurations.

For observations taken on a single night in a single spectral set-
up, we can expect a diameter uncertainty of 0.35 per cent. However,
according to our observation strategy, most of the stars in our sample
were observed on different nights, so we expect these systematics
to have a lower impact on the final uncertainty determination (0.15–
0.25 per cent).

3.5 Final uncertainty determination

The final quantity we measure and fit is therefore

V̂ 2
d = E

sys
d

(
V 2

d + Ebl
d

) + Ewl
d . (6)
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The determination of the uncertainties and the covariance matrix
must be done with some care. It is well known that a naı̈ve error
propagation in presence of high correlations can lead, and indeed
leads as we discovered in our data, to a least-squares fit that falls
far off the data and yields a parameter estimation inconsistent with
a more careful analysis. The paradox, known as Peelle’s pertinent
puzzle (Peelle 1987), has an easy remedy in the case of a fit by
a constant value (Neudecker, Frühwirth & Leeb 2012) or a set of
constant values (Neudecker et al. 2014). In their analytic derivation
of the covariances, the weighted average of the measurements
replaces the individual measurements. We need to generalize their
results to suit our needs, since the different visibilities of the same
baseline do not have the same expected value (V2

disc is not constant).
As Zhao & Perey (1992) already noted, there is no longer an obvious
(analytic) candidate for the weighted average in the case of a non-
linear model. We decided to use the most ‘natural’ estimate: we
replace the visibilities V 2

d by their estimator V̄ 2
d obtained from a

least-squares model fit to the data of the given baseline and set-up.
In the case of a constant model, it would give the same result as
Neudecker et al. (2014).

We introduce the following variances related to the baseline-
dependent statistical errors Ebl

d , the systematic errors E
sys
d , and the

wavelength calibration errors Ewl
d :

Vsys = Var(Ebl
d ) = (

σ sysV̄ 2
d

)2
(7a)

Vbl
b = Var

(
E

sys
d V 2

d

) = (
σ bl

b V 2
d

)2
(7b)

Vwl = Var
(
Ewl

d

) = (
2σ wl

(
1 − V̄ 2

d

) )2
. (7c)

The final error and correlation matrix are given by

(�V̂ 2
d )2 = (�V 2

d )2 + Vsys + Vbl
b + Vwl (8a)

�̂dd ′ =

⎧⎪⎪⎨
⎪⎪⎩

�dd ′ + Vwl + Vsys + Vbl
b if d = d ′

�dd ′ + 
Vwl + ρVsys if BLd = BLd ′

�dd ′ + 
Vwl if SSd = SSd ′

�dd ′ otherwise

, (8b)

where BLd and SSd are the baseline and spectral set-up of data set
d, respectively. In order to prevent a (numerically) singular matrix,
we use 
 = 0.95 instead of 1. Since errors are relatively small
(a few per cents), the second-order terms (<0.1 per cent) arising
when propagating the errors from equation (6) have been ignored
in equations (8a) and (8b).

4 IM PAC T O F TH E U N C E RTA I N T Y MO D E L

We assess the respective importance of the correlation and the level
of detail used in the determination of uncertainties by comparing
the results obtained with different error models. These error models,
explained below, are briefly summarized in Table 3. The values of
the uniform disc diameters obtained from these models are given
in Table 4 and Fig. 1. For the most discrepant error models, the
deviation between estimates is shown in Fig. 2.

In all models, a least-squares fit of the value of the diameter is
performed on the calibrated visibilities V 2

d , sometimes for each
bootstraps b using V 2

db. When the fits are performed on each
bootstrap, the diameter estimate is the median of obtained values
and the uncertainty is obtained with the 1σ confidence interval.

We have gathered the different models into three groups. In
the first one, uncorrelated errors (uncertainties �V 2

d or �V 2
d

′
)

are assumed and no systematics are taken into account. They
are called VAR (‘variance’). The second group uses correlated
errors (covariance matrix �dd ′ or �̂dd ′ ) but no systematics; they
are called COV (‘covariance’). The last group of models uses both
correlated statistical errors and systematics; they are called SYS
(‘systematics’). Within these groups small differences in the error
handling have been considered; they are specified after a slash.

4.1 Error propagation

The two first error models we introduce and compare take neither
correlations nor systematics into account. They differ in the way
the error propagation is performed from the raw to calibrated
visibilities. In the first model, VAR/PROP, the standard quadratic
addition of error terms along the way is performed (fitted to
V 2

d ± �V 2
d ). The second one, VAR, determines the error from the

bootstraps (fit to V 2
d ± �V 2

d

′
). VAR/PROP and VAR are displayed

as the first two points in the left-hand panels of Fig. 1.
If errors are not strictly Gaussian, as expected from the quotient

in equation (4a), the bootstrap method samples the real distribution
of the calibrated visibilities and estimates correctly its average and
confidence intervals, while the standard propagation may not.

In most cases (see Fig. 2, top-left panel), the estimates for the
diameters using VAR/PROP and VAR are consistent with each other
and differ by at most 2σ . For two stars (10 per cent of the sample),
GJ 785, and GJ 86, the results are at least 3σ apart. We conclude that
departure from a Gaussian distribution has not a significant impact
in most cases.

4.2 Correlation of statistical errors

The VAR error model group assumes that errors on the visibilities
are not correlated (V 2

d ± �V 2
d is fitted), while the COV model group

does (V 2
d is fitted with correlation matrix �dd ′ ). We expect that

positive correlations increase the errors bars on the diameter, as the
different data points become partially redundant. They can also shift
its estimated value, as groups of correlated data lose their weight
relative to uncorrelated data.

This is indeed what we observe for most of our stars (in the
left-hand panel of Fig. 1, 2nd and 5th points from the left labelled
VAR and COV). The difference is quite significant as 40 per cent of
the stars show a discrepancy of at least 2σ (see Fig. 2, middle-left
panel).

4.3 Baseline-dependent statistical errors

As explained in Section 3.2, the data at some baselines show more
dispersion than the statistical errors determined during the data
reduction. An additional baseline-dependent error term has been
introduced to account for this discrepancy in model COV/BL.

As it can be seen in Fig. 2 (for star GJ 785), including these
errors can significantly modify the diameter estimate. When a few
baselines are impacted by very high noise of unknown origin,
most of the time bad and fast-varying atmospheric conditions,
the inclusion of an additional error term decreases the weight of
these baselines in the fit (for GJ 785, see two baselines around
50 and 70–80 Mλ in Fig. 4, right column, 3rd panel from the
bottom, which show higher dispersion than error bars predict as
well as some bias towards a less resolved star). GJ 785 is a K star
with no hint of specially high activity, so it is unlikely that this
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Reliable uncertainties in IR interferometry 2665

V2 dispersion is produced by a short-term variability. A relatively
fast atmospheric turbulence (τ 0 = 5–7 ms in H with a decent
seeing of 0.7–0.9) may explain part of it. Two other stars of the
sample show a high, unexplained dispersion of measurements at
several baselines, which could be imputed to an intrinsic short-term
variability: for M-type flare stars GJ 54.1 and GJ 447, σ bl

b = 4.3

and 6.1 per cent, respectively, but, in their case, the dispersion
only impacts the uncertainty, not the diameter estimate. For the
remaining 85 per cent of the sample, the unexplained dispersion
is moderate (σ bl

b = 2.3 ± 0.9 per cent) and the COV and COV/BL
diameter estimates are consistent with each other.
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Figure 1. Comparison of uniform disc diameters in milliarcseconds (mas) (left axis) and their deviation from the robust SYS model estimate in per cent (right
axis) obtained with different error models (Section 4). For each star, two graphs are displayed on the same line. In each graph, the least-squares fit includes
models with uncorrelated statistical and systematic errors (green, points on the left), correlated statistical errors and uncorrelated systematics (black, points in
the middle), and correlated statistical and systematic errors (blue, points on the right.) Left graph: influence of correlations and systematic errors. Right graph:
robustness with respect to baseline systematics, by comparing fits where a baseline has been removed. Comparison of uniform disc diameters using different
fitting methods.
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2668 R. Lachaume et al.

Table 3. The different uncertainty models (Section 4). The first four models used uncorrelated statistical errors, the three following ones correlated statistical
errors, and the last ones include correlated systematic errors. Data uncertainties can be obtained from pndrs error propagation, the bootstrap variances, the
bootstrap variances plus a noisy correlation matrix representing uncorrelated data (‘corr. noise’), or the bootstrap covariances. Baseline-dependent statistical
errors of uncertain origin may be ‘ignored’ or ‘fitted’ on each baseline so that baseline χ2

r = 1. Systematic errors can either be modelled with ‘correlation’
matrix or one can just perform a ‘rescaling’ of all statistical errors to a global χ2 = 1. For the sake of comparison, we also include the incorrect correlation
matrix (‘PPP corr.’) that may lead to Peelle’s Pertinent Puzzle. Fitted visibilities can either be the mean of the bootstraps (‘mean’) or all bootstraps (‘bootstraps’).
In the bootstrap case, the diameter value and uncertainty are obtained from the median and 1σ confidence interval of the obtained distribution. Mathematical
expression for uncertainties: either an error vector or a covariance matrix.

Model Data uncertainties Baseline-dependent Systematic Fitted Mathematical expression
statistical errors errors visibilities used for the uncertainties

VAR/PROP propagation ignored rescaling mean Equation (4b) �V 2
d

VAR variances ignored rescaling mean Equation (4d) �V 2
d

′

VAR/BS variances ignored rescaling bootstraps Equation (4d) �V 2
d

′

VAR/NOISE variances ignored rescaling mean Equation (9b) ˜�dd ′
– + corr. noise – – – – –

COV covariances ignored rescaling mean Equation (4c) �dd ′
COV/BL covariances fit rescaling mean Equation (4c) ̂�dd ′ with σ sys = σwl = 0
COV/BL + BS covariances fit rescaling bootstraps Equation (4c) ̂�dd ′ with σ sys = σwl = 0

SYS/PPP covariances fit PPP corr. mean Equation (4c) ̂�dd ′ with V̄ 2
d = V 2

d

SYS covariances fit correlation mean Equation (4c) ̂�dd ′
SYS/BS covariances fit correlation bootstraps Equation (4c) ̂�dd ′

Table 4. Uniform disc diameters of the sample using different model fitting routines of Section 4: ϑprop (uncorrelated least squares using the error propagation
of the reduction pipeline), ϑvar (uncorrelated least squares using observed variances), ϑcov (least squares using observed covariances), ϑBL (least squares
using observed covariance and fitting baseline-dependent statistical errors), and ϑ sys (correlated least squares with baseline systematics). For each model, the
following relative errors on the visibilities are given: σ st is obtained from the data, σ bl

b is derived by modelling an additional baseline-dependent statistical (i.e.
uncorrelated) error term, σ sys is obtained by fitting the strength of the systematics (fully correlated on the same baseline). The reduced χ2

r of the fits is also
given. For GJ 581, the reduced chi squared of the COV/BL model is below one, so systematics adjust to zero and σ sys = 0 for SYS.

Star VAR/PROP VAR COV COV/BL SYS
ϑ χ2

r σ st ϑ χ2
r σ st ϑ χ2

r σ st ϑ χ2
r σ st σ bl

b ϑ χ2
r σ st σ bl

b σ sys

(mas) (%V2) (mas) (%V2) (mas) (%V2) (mas) (% V2) (mas) (per cent V2)

GL1 0.780(01) 2.52 3.1 0.782(01) 3.43 2.4 0.797(03) 3.44 2.4 0.796(02) 1.08 2.4 2.0 0.794(05) 1.00 2.4 2.0 1.0
GL54.1 0.400(07) 3.33 6.6 0.407(06) 3.31 6.7 0.408(10) 2.95 6.7 0.402(09) 1.63 6.7 4.3 0.397(35) 1.00 6.7 4.3 4.3
GL86 0.662(02) 2.12 4.4 0.648(02) 3.10 4.1 0.683(05) 3.09 4.1 0.678(04) 1.27 4.1 3.8 0.683(15) 1.00 4.1 3.8 2.6
GL229 0.865(03) 5.96 4.9 0.860(03) 6.95 3.5 0.888(05) 3.26 3.5 0.870(04) 1.27 3.5 3.3 0.840(12) 1.00 3.5 3.3 1.6
GL273 0.743(02) 1.92 4.9 0.744(02) 2.87 4.3 0.760(05) 2.80 4.3 0.752(04) 1.14 4.3 2.2 0.763(10) 1.00 4.3 2.2 1.6
GL370 0.522(02) 2.04 2.2 0.518(03) 2.73 2.0 0.536(05) 2.77 2.0 0.532(04) 1.15 2.0 1.4 0.530(12) 1.00 2.0 1.4 1.6
GL406 0.521(04) 2.02 6.5 0.522(04) 2.03 6.5 0.539(08) 2.18 6.5 0.540(07) 1.17 6.5 2.8 0.562(20) 1.00 6.5 2.8 2.7
GJ433 0.390(10) 2.95 4.5 0.363(11) 3.93 3.7 0.426(15) 2.91 3.7 0.422(13) 1.28 3.7 2.5 0.457(30) 1.00 3.7 2.5 2.6
GL447 0.513(07) 1.63 8.1 0.519(08) 2.73 4.8 0.539(16) 2.97 4.8 0.533(12) 1.29 4.8 6.1 0.524(29) 1.00 4.8 6.1 2.3
GL551 1.059(03) 4.04 3.2 1.051(03) 4.62 3.1 1.038(05) 3.29 3.1 1.068(04) 1.17 3.1 3.0 1.066(07) 1.00 3.1 3.0 1.1
GJ581 0.467(04) 1.43 3.7 0.471(05) 2.61 2.7 0.460(08) 2.15 2.7 0.464(07) 0.97 2.7 2.3 0.464(07) 0.97 2.7 2.3 0.0
GJ628 0.634(02) 1.96 1.8 0.636(02) 1.85 1.8 0.645(07) 2.23 1.8 0.646(05) 1.13 1.8 0.9 0.644(14) 1.00 1.8 0.9 1.6
GJ667C 0.390(08) 1.90 4.8 0.371(08) 3.01 3.6 0.401(15) 2.86 3.6 0.411(11) 1.05 3.6 3.1 0.406(14) 1.00 3.6 3.1 0.7
GJ674 0.705(06) 1.10 3.7 0.704(06) 1.21 3.7 0.695(18) 1.70 3.7 0.700(15) 1.07 3.7 1.4 0.720(37) 1.00 3.7 1.4 2.6
GJ729 0.601(03) 1.89 3.6 0.602(03) 1.81 3.7 0.620(08) 2.42 3.7 0.615(06) 1.27 3.7 0.9 0.625(20) 1.00 3.7 0.9 2.4
GL785 0.681(09) 6.64 2.1 0.630(10) 21.5 1.7 0.619(11) 7.04 1.7 0.720(08) 1.82 1.7 2.4 0.677(21) 1.00 1.7 2.4 2.0
GJ832 0.807(04) 2.36 2.5 0.801(04) 3.12 2.2 0.803(05) 2.21 2.2 0.798(05) 1.29 2.2 1.2 0.794(10) 1.00 2.2 1.2 1.0
GJ876 0.680(02) 2.14 4.5 0.683(02) 2.49 4.2 0.692(04) 2.69 4.2 0.691(03) 1.12 4.2 3.2 0.686(09) 1.00 4.2 3.2 1.7
GL887 1.298(01) 4.01 2.9 1.297(01) 5.08 2.5 1.302(02) 4.27 2.5 1.300(02) 1.16 2.5 3.7 1.297(04) 1.00 2.5 3.7 1.4
GL1061 0.292(14) 1.93 3.2 0.313(12) 2.27 2.9 0.332(18) 1.92 2.9 0.332(16) 1.16 2.9 1.9 0.344(34) 1.00 2.9 1.9 1.8

4.4 Systematic errors

Usually, error models assume that the uncertainties on data points
are underestimated and rescale them so that a reduced chi squared of
1 is obtained. This is indeed what we do in our models that exclude
systematic errors (VAR and COV model groups).

In the SYS model group, however, no rescaling of error bars
occurs. Instead a relative error term σ sys is introduced, as explained
in Section 3.3 and the fit is performed with a correlated covariance
matrix (�̂dd ′ in equation 8b). The value of σ sys is fitted to a reduced
chi squared of one.
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Figure 2. Comparison between diameter estimates for the four error models that most differ VAR/PROP, VAR, COV, SYS (see Section 4). Left: histogram of
the number of standard deviations between the estimates. As a reference, we plot the expected distribution if the two estimates had the same expected value
and were independent Gaussian random variables. Right: direct comparison of the diameters estimates. The dashed line indicates the place where the estimates
are equal.

The difference in estimated diameter is often significant as
25 per cent of the stars show a discrepancy of at least 1σ (see
e.g. Fig. 2, bottom-left panel) between the COV and SYS models.

In Fig. 1, one can also see (left-hand panel, 6th and 9th points
from the left, labelled COV/BL and SYS) that systematics tend to
increase the diameter uncertainties (as positive correlations usually
do). A comparison of uncertainties in the VAR and SYS models
is given in Fig. 3 as a function of the resolution factor, which we
define as the ratio of the UD diameter of the star to the nominal
resolution of the interferometer λ/Bmax. The typical error in SYS
is 4.8 per cent for a resolution factor of 0.2 (≈0.45 mas diameter
at 140 m baselines in the H band) with respect to 1.2 per cent in
the standard VAR model. Since the VAR model is widely used

in the literature, we conclude that diameter uncertainties may
be significantly underestimated. The relative uncertainty scales
approximately as the inverse of the 2.5th power of the resolution,
making determinations for underresolved objects (� 0.4 mas at
VLTI in H) difficult. Since the fringe contrast loss 1 − V2 scales as
the square of the diameter, we expected the diameter uncertainty to
scale as the inverse of the second power of the resolution factor. The
additional drop in precision may be attributed to a loss of precision
as the stars get fainter. In Fig. 1, we can see that three of the four
most underresolved targets have been observed very close to the
sensitivity limit of PIONIER.

For reference, Fig. 1 shows another error model, SYS/PPP, that
uses the naı̈ve but erroneous correlation matrix leading to Peelle’s
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2670 R. Lachaume et al.

Figure 3. Relative uncertainty on the diameter versus the resolution factor
r = ϑ /(λ/B), with the standard processing technique (VAR model, green)
and our determination with covariances and systematics (SYS model,
Section 4.4). Stars observed close to, or below, the nominal sensitivity limit
of PIONIER are represented as hollow markers.

pertinent puzzle. Indeed, the diameter estimates are significantly off
for about half of the sample.

4.5 Noise in the covariance matrix

With model VAR/NOISE, we aim to assess the influence of the
noise in the correlation to disentangle noise systematics from actual
correlation influences. We measure the noise level in the covariances
�dd ′ , generate noisy matrices for uncorrelated data, and perform a
data fit using these matrices.

Most data are only lightly correlated, for different nights and
instrument configurations are loosely correlated by the small
uncertainty on the calibrators diameter. So, the histogram of the
correlation matrix values features a central component, a Gaussian-
like distribution around a small positive constant, corresponding
to the mostly uncorrelated data. In addition it has a bump with
large positive correlations corresponding to the small fraction of
highly correlated data (spectral channels of the same observation,
for instance). We fit the width of the central component to get the
noise level.

Then, we generate Nboot covariance matrices for noisy uncorre-
lated data



(b)
dd ′ = δdd ′ + ε

∑
k M

(b)
kd M

(b)
kd ′ (9a)

�̃
(b)
dd ′ = 


(b)
dd ′�V 2

d �V 2
d ′ , (9b)

where M
(b)
kd are picked using independent normal Gaussian dis-

tributions and ε is adjusted to the noise level. The largest dimension
along k that allows 


(b)
dd ′ to be positive definite is used.

For each of these noisy covariance matrices, we perform a least-
squares fit to all calibrated visibilities V 2

d taken at baselines ud.
Let ϑ (b)

corr noise (b in 1Nboot) be the values of the UD diameters. The
UD diameter estimate ϑcorr noise is obtained from their average. Its
uncertainty �ϑcorr noise is the quadratic sum of the model uncertainty
�ϑvar and the dispersion of ϑ (b)

corr noise.
As we can see from the data in Fig. 1 (left-hand panels, second

and fourth points), there is no significant difference between the

VAR and VAR/NOISE models for any of our stars. We conclude
that the impact of correlations is a real effect, not a bias introduced
by noisy data.

4.6 Non-Gaussian uncertainties

In order to assess the influence of non-Gaussian uncertainties, we
performed a least-squares fit to each bootstrap and look at the
distribution of the estimates for the uniform disc diameter. We
expect that a distribution of visibilities with significant skewness,
kurtosis, or long tails would be reflected in the distribution of
diameter estimates, and, in turn, in its mean value and/or uncertainty.

For model VAR/BS, V 2
db ± �V 2

d (1 ≤ b ≤ Nboot) is fitted, yielding
a set of uniform disc diameter estimates ϑvarbs. The median value
and 1σ confidence interval of ϑvarbs yield the VAR/BS diameter
estimate ϑvar ± �ϑvar. The same is performed for error models
with correlated statistical errors (COV/BL + BS) and correlated
statistical and systematic errors (SYS/BS).

Fig. 1 (left-hand panel) clearly shows that there is no significant
difference in the diameter estimate for VAR and VAR/BS, COV/BL
and COV/BL + BS, and SYS and SYS/BS.

4.7 ‘Bad baseline’ scenario

We additionally check for the scenario that a ‘bad baseline’, e.g.
tainted with a strong systematic, may significantly alter the value of
the uniform disc estimate. Given that baseline, we fit the data that
are taken at any other baseline and compare the diameter estimates
with the one obtained with all baselines. The process is repeated for
each baseline. The diameter estimates with one baseline removed
are reported on the right-hand side of Fig. 1.

Two examples of ‘bad baselines’ can be seen in Fig. 4. For GJ 876,
a baseline around 75–80 megacycles displays very high dispersion
(V2 between 0.5 and 1.2) despite small error bars (∼0.05). This
issue does not originate from a bad calibrator, because this kind of
dispersion would only be seen with a well-resolved, low-contrast
binary. That would clearly been seen (1) in closure phases, which
was not the case, and (2) as a strong bias towards a more resolved
object with most points below the fit. The inclement weather during
this particular observation is a likely explanation with a seeing
below average (1.05 arcsec in H) and a short coherence time (6 ms
in H). Interestingly, this ‘bad baseline’ has very little impact on the
diameter estimates as GJ 876 has all its estimates (VAR, COV,
COV/BL, SYS models) within less than 1 per cent dispersion,
probably because it shows little bias (the data approximately average
the V2 ≈ 0.85 estimate). Another example of ‘bad baseline’ has
already been mentioned for GJ 785 (less resolved around 50 and
70–80 Mλ in Fig. 4, left column, 3rd panel from the bottom), this
time with a clear bias. Its origin is unknown, but it is unlikely to be
a calibrator issue either: if there was a large error on the diameter of
the unique, large calibrator HD 196387, there would be an unseen
error on GJ 785’s diameter but very little additional dispersion
between baselines. The calibrator has no measured closure phase
(� 0.02 rad) and no detectable near-infrared excess (no evidence
from JHK modelling in McDonald, Zijlstra & Boyer 2012), so
binarity or circumstellar material is very unlikely to account for a
5 per cent error in the visibility calibration. The bias induced by the
‘bad baseline’ reflects in Fig. 1, right-hand panel: with this baseline
removed (3rd point of the 6), the estimates of the VAR, COV/BL,
and SYS models are consistent, but with it (left-hand panel) they
differ by several σ .
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Figure 4. Squared visibility amplitudes versus baseline length. Vertical error bars: reduced data, using one shade of grey and red per baseline. Lines: best
model fits VAR (uncorrelated, green dashed line), COV/BL (correlated, black solid line), and SYS (with systematics blue dotted line). In many models they
can hardly be distinguished from one another.

These two ‘bad baselines’ are extreme cases that could be solved
easily by removing the data from the fit. However, there are targets
(GJ 86, GJ 229, GJ 447, GJ 551) where the visibility plot (Fig. 4)
does not show anything obviously wrong, but the analysis of
removing one baseline in the fits produces a significant difference
in the VAR and/or COV/BL diameter estimates (right-hand panel
of Fig. 1).

When systematic errors are included, the impact of ‘bad base-
lines’ disappears completely (right-hand panel of Fig. 1): all
diameter fits with one baseline removed are consistent with each
other. The price to pay for this stability is larger error bars as we
have shown in Section 4.4 and Fig. 3.

It appears, therefore, that observations with a few configurations
over a few nights are enough to prevent a single baseline to
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significantly bias the diameter estimate as long as systematic errors
are modelled.

4.8 Bad calibrator scenario

For several of our targets (GJ 1, GJ 54.1, GJ 86, GJ 370), one
or more calibrators from MER05 more resolved than the target
were used together to smaller, unresolved ones. In the bad luck
scenario that a resolved calibrator’s diameter is off by several
standard deviations, it would bias the transfer function at the two or
three large baselines it is observed with. Fortunately, for these four
stars, there is no evidence that a few baselines skew the diameter
estimate. The difference in the COV estimates when one baseline
is removed from the fit is <1 per cent (right-hand panel of Fig. 1)
and the COV and SYS estimates are within 1 per cent of each other.
We are confident that the diameter estimates of these stars are not
significantly impacted by a bad calibrator.

5 C O N C L U S I O N

Many astronomical objects (young stellar objects, late-type dwarfs)
are too faint in the visible to be observed by optical interferometers
and require kilometric baselines to be fully resolved in the infrared.
For this reason, we are bound to infer the object’s properties
from underresolved observations. In the case of stellar diameters,
we are fortunate enough that there are no degeneracies in the
(unique) parameter estimation, but the underresolved character has
a strong impact in terms of precision. While the geometric size
of a fully resolved object can be estimated within a fraction of
a per cent, uncertainties and systematics of 5–10 per cent on a single
observation are common when the target is underresolved.

Our study had the main objective to partially overcome these
limitations by a careful observation layout and to better quantify
the remaining uncertainties. To that end, our SYS model fully takes
into account correlated statistical uncertainties and systematics.

The main results are as follows:

(i) The error model has a significant impact on the estimate of
the uniform disc diameter and its uncertainty. Correlations between
visibilities have a strong impact (Sects. 4.2) as well as baseline
systematics (Section 4.4). In both cases, the estimates may differ
by more than three standard deviations. The additional errors atop
the statistical errors determined by the data processing software are
3.3 ± 1.2 per cent on the square visibilities (mean and dispersion in
our 20 surveyed stars), which is in line with the generally accepted
value of 5 per cent (Colavita et al. 2003). However, the purely
systematic term (highly correlated errors) is only 1.8 ± 0.9 per cent.

(ii) A few observations with different configurations and/or
nights are usually enough to avoid a significant bias by a single
baseline and instrumental configuration (Section 4.7) provided
that systematic errors are taken into account. It confirms the
usual observation strategy by, for instance, Boyajian et al. (2012),
Gallenne et al. (2012), and Rabus et al. (2019) in the case of stellar
diameters of underresolved stars.

(iii) Departure from a Gaussian distribution has no significant
impact (Section 4.6) except indirectly in the error propagation
(Section 4.1). It needs not to be modelled provided that the
uncertainties on the calibrated visibilities are obtained from the
bootstraps (this work) or from an analytic determination of the
probability density function (Perrin 2003).

(iv) The uncertainty on the diameter is four times larger than the
ones modelled with a standard least-squares fit to uncorrelated data.

For a diameter of 0.45 mas in the H band at 140 m baselines (typical
of VLTI/PIONIER), our typical uncertainty is 4.8 per cent (SYS
model) with respect to 1.2 per cent with the usual determination
(VAR/PROP and VAR models).

We have offered here a relatively easy way, albeit numerically
intensive, to obtain correlations between observables, by means of
bootstrapping. Even if most reduction pipelines do not propagate
correlations, it is possible to run them a large number of times
on randomized data (interferograms and calibrator diameters are
picked at random) to obtain the multivariate probability density
function of the interferometric observables. Systematics errors such
as a bad calibrator not bad enough to be detected, rapidly varying
atmospheric conditions between science target and calibrators,
or instrumental systematics (e.g. differential polarization) have
typically cast a doubt on the robustness of parameter estimation. We
have provided a method to deal with these systematics in a relatively
inexpensive way: the covariance matrix of the least-squares fit is
modified to include a relative systematic error term. The price to
pay for a more robust estimation (accurate, i.e. non-biased) is a
significantly larger uncertainty.

Therefore, we strongly recommend that future interferometric
studies take into account correlated errors and take time to model
systematics.
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