

CALIBRATION DATA

LOWELL DISCOVERY TELESCOPE

TUTORIAL SERIES

OVERVIEW

- Calibration Data: Why do it?
- What kind of calibration data do astronomers take?
- What does it mean to "reduce" the data?

RESULTS OF CALIBRATION

- LMI: raw and calibrated images
- DeVeny: raw and bias-subtracted image
- NIHTS: ???

G188-26 (M2V star)

CALIBRATION DATA

Lowell Discovery Telescope – Tutorial Series

TYPES OF CALIBRATION DATA

- Removing pixel-to-pixel variations in sensitivity:
 - Bias (or 'zero') frames: zero-point level for each pixel (also includes fixed-pattern noise)
 - Dark current frames: amount of signal produced in the absence of light
 - Flat field frames: multiplicative sensitivity (QE, dust, etc.) per pixel
- Turning 'counts' into physical meaning:
 - Imaging: photometric standards
 - Spectroscopy: atomic emission arc lamps, spectrophotometric standards

EXAMPLES

- To follow along, download:
 - SAOImageDS9: https://sites.google.com/cfa.harvard.edu/saoimageds9
 - Example Images: <u>http://www2.lowell.edu/users/tbowers/CalibrationDataEx.tgz</u>
- Examples of LMI, DeVeny, and NIHTS raw frames, calibration frames, and calibrated frames

WHY TAKE SO MANY?

868

1780

2702

• Statistics • Statistics • Noise red Mean: $\sigma_{total} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \dots + \sigma_N^2} = \sqrt{N\sigma_i^2} = \sigma_i\sqrt{N}$

4536

5449

6362

3615

• Cosmic ray rejection

6

7284

BIAS FRAMES

- What information is contained in the
- The Master Bias: comparison with raw bias frame
- What is 'overscan'? (LMI CCD is 3072 x 3080 pixels, binned 2x2)

CALIBRATION DATA

3128 x

FLAT FIELD FRAMES

• What do they tell us? Why divide by a master?

- Sky Flats vs. Dome Flats
- Examples: Imaging vs. Spectroscopy

0.21 Rough range of human vision 8 4006 11856 15762 19707 23613 27519 31463 7912 35369 CALIBRATION DATA Lowell Discovery Telescope – Tutorial Series

ARC LAMP CALIBRATION FRAMES

• What are they, and why take them?

Wavelength (Å)	Species	Wavelength (Å)	Species	Wavelength (Å)	Species	Wavelength (Å)	Species	Wavelength (Å)	Species
3125 67	Hσ	5852 488	Ne	7535 774	Ne	6965 430	Ar	3080 822	Cd
3131.70	Hø	5881.895	Ne	7544.044	Ne	7067.217	Ar	3082.593	Cd
3341.48	Hø	5944.834	Ne	7943.180	Ne	7147.041	Ar	3133.167	Cd
3650.153	Hg	5975.534	Ne	8082.457	Ne	7272.935	Ar	3252.524	Cd
3654.84	Hg	6029.997	Ne	8136.406	Ne	7383.979	Ar	3261.055	Cd
3663.279	Hø	6074.337	Ne	8300.324	Ne	7503.868	Ar	3403.652	Cd
4046.563	Hg	6096.163	Ne	8377.606	Ne	7514.651	Ar	3466.200	Cd
4077.831	Hg	6128.450	Ne	8418.426	Ne	7635.106	Ar	3467.655	Cd
4358.327	Hg	6143.062	Ne	8495.359	Ne	7723.760	Ar	3499.952	$\mathbf{C}\mathbf{d}$
4916.068	Hg	6163.594	Ne	8591.258	Ne	7948.175	Ar	3610.508	$\mathbf{C}\mathbf{d}$
5460.735	Hg	6217.281	Ne	8634.647	Ne	8006.156	Ar	3612.873	\mathbf{Cd}
5769.598	Hg	6266.495	Ne	8654.384	Ne	8014.785	Ar	3614.453	\mathbf{Cd}
5790.663	Hg	6304.789	Ne	8853.867	Ne	8103.692	Ar	3649.558	\mathbf{Cd}
	8	6334.428	Ne	8865.756	Ne	8115.311	Ar	3981.926	$\mathbf{C}\mathbf{d}$
		6382.991	Ne	8919.499	Ne	8408.209	Ar	4140.500	\mathbf{Cd}
		6402.246	Ne	8988.58	Ne	8424.647	Ar	4306.672	\mathbf{Cd}
		6506.528	Ne	9148.68	Ne	8521.443	Ar	4412.989	\mathbf{Cd}
		6532.882	Ne	9201.76	Ne	8667.945	Ar	4662.352	\mathbf{Cd}
		6598.953	Ne	9300.85	Ne	9122.966	Ar	4678.149	\mathbf{Cd}
		6652.092	Ne	9313.98	Ne	9224.495	Ar	4799.912	\mathbf{Cd}
		6678.276	Ne	9326.52	Ne	9657.784	Ar	5085.822	\mathbf{Cd}
		6717.043	\mathbf{Ne}	9354.218	\mathbf{Ne}	9784.501	Ar	5154.660	\mathbf{Cd}
		6929.467	Ne	9425.38	Ne	10470.51	Ar	6099.142	\mathbf{Cd}
		7024.050	Ne	9459.21	Ne			6111.490	\mathbf{Cd}
		7032.413	Ne	9486.680	Ne			6325.166	\mathbf{Cd}
		7173.938	Ne	9534.167	Ne			6330.013	\mathbf{Cd}
		7245.166	\mathbf{Ne}	9547.40	\mathbf{Ne}			6438.470	\mathbf{Cd}
		7438.898	Ne	9665.424	Ne			6778.116	\mathbf{Cd}
		7488.871	Ne					7345.670	\mathbf{Cd}
				£					
							9		

 Table 5.
 Arc Line Identification by Species

CALIBRATION DATA

Lowell Discovery Telescope – Tutorial Series

ARC LAMP CALIBRATION

- What are they, and why take them?
- What is wavelength calibration?
- Flexure in the instrument changes wavelength solution

SCIENCE CALIBRATION FRAMES

- Science frames used for calibration
- Photometric standard stars for photometry
- Spectrophotometric standard stars for spectroscopic flux calibration.

CALIBRATION DATA

SUMMARY

- Calibration removes the effects of the instrument on the data, leaving a clean image of the sky.
- Three main types of instrumental calibration frames: bias, flat field, arc lamps (spectroscopy only)
- Astronomers can also take science calibration frames to convert observed counts to physical values.

CALIBRATION DATA

PROBLEM SET

- Describe a bias frame (what is it, and how is it taken?). What information does it contain? Why do
 observers take many (≥10) bias frames at the start (or end) of the night? What do observers do with
 this data?
- 2. Describe a flat field frame (what is it, and how is it taken?). What information does it contain? What is the difference between a sky flat and a dome flat? What determines which filters an observer uses for flat field frames? What do observers do with this data?
- 3. Describe a spectroscopic arc lamp calibration frame (what is it, and how is it taken?). What information does it contain? Why will an observer take arc comparison frames throughout the night, and not just at one end? What do observers do with this data?

CALIBRATION DATA